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Abstract

Industries with significant scale economies or learning-by-doing may come
to be dominated by a single firm. Economists have studied how likely this is to
happen, and whether it is efficient, using models where buyers are price or quan-
tity takers, even though these industries are often also characterized by buyer-
seller negotiations. We extend the dynamic “learning-by-doing and forgetting”
model of Besanko, Doraszelski, Kryukov, and Satterthwaite (2010) to allow for
Nash-in-Nash bargaining over prices. Price-taking and the social planner solu-
tion are captured as special cases. We show that sellers’ dynamic incentives,
market concentration and welfare can change sharply, and non-monotonically,
as one moves away from the price-taking assumption. We study the implica-
tions of buyer bargaining power for the existence of multiple equilibria, the
design of subsidy policies and the welfare effects of policies designed to increase
competition.
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1 Introduction

Industries where some feature of demand or supply may allow a firm that achieves

an initial advantage to attain a position of lasting market dominance often attract

the attention of policy-makers. For example, industrial and trade policies have been

implemented or proposed for industries making electric vehicle batteries, semiconduc-

tors, solar panels and aircraft, where scale economies or learning-by-doing (LBD) are

important, while, in a different type of setting, antitrust agencies and regulators are

increasingly active when addressing the largest players in digital markets character-

ized by network effects. Even when non-economic concerns motivate policies, models

of dynamic competition are required to evaluate their effects.

Existing theoretical or empirical models of dynamic competition in industrial or-

ganization (for example, Fudenberg and Tirole (1983), Cabral and Riordan (1994),

Benkard (2000), Besanko, Doraszelski, Kryukov, and Satterthwaite (2010), Besanko,

Doraszelski, and Kryukov (2014)) and international trade (Dasgupta and Stiglitz

(1988), Leahy and Neary (1999), Neary and Leahy (2000)) assume that sellers unilat-

erally set prices or quantities. These models therefore miss how prices are negotiated

in many industries, especially for capital goods, where dynamic competition is im-

portant.

This paper examines how bargaining affects outcomes and optimal policies in a

model of dynamic price competition, where buyers arrive repeatedly and market struc-

ture is endogenous. To study novel interactions between bargaining and dynamics,

we extend the well-known dynamic duopoly seller “learning-by-doing (LBD) and for-

getting” computational model of Besanko, Doraszelski, Kryukov, and Satterthwaite

(2010) (BDKS). Specifically, we replace the assumption that sellers simultaneously

set take-it-or-leave it prices each period with a more general assumption that prices

are determined by a form of “Nash-in-Nash” bargaining between the buyer and the

sellers (Horn and Wolinsky (1988), Collard-Wexler, Gowrisankaran, and Lee (2019)).

The Nash-in-Nash structure, embedded in static models, has become widely used
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to understand business-to-business transactions in healthcare (e.g., Gowrisankaran,

Nevo, and Town (2015), Ho and Lee (2017), Grennan (2013)), cable television (e.g.,

Crawford, Lee, Whinston, and Yurukoglu (2018))) and consumer packaged goods

settings (e.g., Draganska, Klapper, and Villas-Boas (2010)).

Assuming that there is a myopic single-unit buyer every period, an assumption

that we maintain, and that sellers set prices, BDKS compute symmetric Markov

Perfect Nash equilibria, assuming thirty levels of know-how (M = 30) for each firm.

Equilibrium prices equal a markup plus the seller’s opportunity cost of sale. The

opportunity cost equals the current production cost, which falls with know-how, less

how much the seller’s expected future profit increases when it makes a sale (dynamic

incentives). BDKS search for equilibria using numerical homotopies and find that

equilibria where sellers set low prices in states where they are symmetric, even when

they have accumulated significant know-how, and one seller will typically tend to have

a significant lead in equilibrium, often co-exist with equilibria where prices are less

sensitive to know-how and more symmetric market structures will tend to emerge.

We focus on how the allocation of bargaining power, determined by a single pa-

rameter, affects market structure and welfare. Shifting bargaining power to buyers

will lower seller markups and, holding the evolution of market structure fixed, will

tend to reduce sellers’ dynamic incentives. However, markup shrinkage will also lead

to the seller with the larger markup, typically the leader, making more sales so that

leads last longer. When sellers’ bargaining power is not too limited and leads are ini-

tially short-lived, this lead lengthening can increase the incentives of a seller to attain

and to preserve a lead. We show, for a wide range of empirically relevant learning pa-

rameters, that this effect can cause market structure and welfare outcomes to change

significantly and quickly as we move away from the standard assumption that sellers

make take-it-or-leave-it offers.

We explore how the allocation of bargaining power changes the design and the

effects of stylized policies. We show, for example, that a subsidy scheme that would

3



implement the social planner outcome with price-setting can be worse than no scheme

at all when sellers only have much greater bargaining power than buyers. We also

consider policies that have been considered as likely to promote more symmetric

market structures, possibly at the cost of softening competition. We find that the

effects of these policies on concentration and welfare can also be sensitive to the

assumed allocation of bargaining power.

We also make methodological contributions. We reformulate the equations defin-

ing symmetric equilibria in terms of the probability that a laggard makes a sale,

rather than prices and values. This reduces the number of equations from 2M2 to

M(M−1)
2

, allowing us to provide some limited analytical results for the M = 2 model,

to use a non-homotopy method to enumerate equilibria when M = 3 (allowing us

to confirm homotopy results), and to formulate easy-to-solve equations for optimal

subsidies even when M is large. We find that, for both M = 3 and M = 30, the

multiplicity of equilibria that is common with price-setting disappears when buyers

have more than limited bargaining power.

By extending a price-setting model to allow for bargaining, our paper contributes

directly to the literature studying dynamic competition with LBD that spans the ana-

lytic insights of Cabral and Riordan (1994), the computational analyses of BDKS, Be-

sanko, Doraszelski, and Kryukov (2014), Besanko, Doraszelski, and Kryukov (2019a),

Besanko, Doraszelski, and Kryukov (2019b) and Sweeting, Jia, Hui, and Yao (2022)

(SJHY), and the empirical analyses of mergers and industrial policies by Benkard

(2004), Kim (2014), Kalouptsidi (2018), An and Zhao (2019), and Barwick, Kaloupt-

sidi, and Zahur (2019).1 Our policy examples are very stylized, but they suggest

how allowing for bargaining could also change the policy recommendations from

richer models. SJHY assume price-setting but extend the Besanko, Doraszelski, and

Kryukov (2014) model to allow for forward-looking buyers who expect to purchase in

1A distinct literature on industry dynamics (Abbring and Campbell (2010) and Abbring, Camp-
bell, Tilly, and Yang (2018)) assumes that firms are symmetric to guarantee equilibrium uniqueness
in order to simplfiy an analysis of how industries respond to aggregate shocks.
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some share of future periods. We will maintain BDKS’s assumption that buyers are

myopic in this paper, except when we solve the social planner’s problem by assuming

that there is a long-lived buyer who captures all surplus.

The Besanko, Doraszelski and Kryukov papers use a model (“BDK model”) where

sellers can enter or exit, and there is no forgetting. We focus on the BDKS model for

three reasons. First, reallocating bargaining power away from sellers in a model with

fixed costs (or entry costs and scrap values) could cause the industry to disappear

entirely. This effect is no doubt important, but it is distinct from the effects of bar-

gaining power on dynamic incentives and leadership on which we focus. Second, our

reformulation has particular benefits in the BDKS model where there is no outside

good, although we allow for an outside good as a robustness check. Third, competi-

tive dynamics in the BDKS model are arguably richer because stochastic know-how

depreciation implies that a firm can hope to weaken even a well-established rival by

depriving the rival of sales.

While most applications of Nash-in-Nash bargaining have been within static mod-

els, a small number of papers consider dynamic settings. Lee and Fong (2013) assume

period-by-period Nash-in-Nash bargaining in a game where hospitals and insurance

companies form networks that change stochastically, while Dorn (2023) shows how

Kalai (1977) proportional bargaining facilitates consideration of multiperiod hospital-

insurer contracts with index clauses. Yang (2020) embeds Nash-in-Nash bargaining

over prices into a dynamic model of innovation in the smartphone device industry and

Tiew (2024) considers a dynamic game where duopoly newspapers may bargain over

forming or continuing a joint operating agreement. In the current paper bargained

prices, through their impact on sales, directly affect sellers’ competitiveness and mar-

ket structure in future periods, which is the central issue in the dynamic competition

literature.

The paper is structured as follows. Section 2 outlines the model. Section 3 details

the two alternative formulation of the equilibrium equations, our outcome measures
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and analytic results. Section 4 uses the small state space of the M = 3 model

to illustrate how reallocating bargaining power changes incentives and strategies.

Section 5 provides results and a wider set of policy analyses for the M = 30 model.

Section 6 concludes. The online Appendices contain proofs, details of methods and

additional results.

2 Model

This section presents the model, focusing on where we depart from BDKS. Readers

should consult BDKS for additional motivation.

2.1 States and Costs.

There is an infinite horizon, discrete time, discrete state game. The common discount

factor is β = 1
1.05

.2

Sellers. There are two long-lived ex-ante symmetric but differentiated sellers (i =

1, 2). i’s production cost is c(ei) = κρlog2(min(ei,m)), where ei = 1, ...,M is a commonly

observed state variable that tracks the seller’s “know-how”.3 The industry state is

e = (e1, e2). We will call a seller with higher know-how than its rival the “leader”,

and its rival the “laggard”. A lower value of the progress ratio ρ ∈ [0, 1] implies

stronger learning economies. BDKS assume m = 15 and M = 30. We will also

consider m = M = 2 and m = M = 3, the smallest state space where a leader can

have either a “small” or a “large” advantage.

As described below, one unit will be purchased from one of the sellers in each

2As BDKS discuss, one can interpret this discount factor as corresponding to a period length of
1 month, a monthly discount rate of 1 percent and a probability that the industry survives each
month of 0.96.

3Asker, Fershtman, Jeon, and Pakes (2020), Sweeting, Roberts, and Gedge (2020) and Sweeting,
Tao, and Yao (2023) consider dynamic models where serially correlated state variables are private
information.
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period. ei evolves, except at the boundaries of the state space, according to

ei,t+1 = ei,t + qi,t − fi,t (1)

where qi,t is equal to one if and only if firm i makes the sale, and fi,t is equal to one

(0 otherwise) with probability ∆(ei) = 1− (1− δ)ei with δ ∈ [0, 1).4 The probability

of forgetting (∆) is increasing in both δ and ei. The know-how of a firm that makes

a sale can increase by one or stay the same, while the know-how of the firm that does

not make the sale will stay the same or decrease by one.

Buyers. Every period a buyer arrives who will purchase exactly one unit from one

of the firms. A buyer is assumed to live only one period, and to choose the seller that

maximizes her indirect utility, v− pi + σεi, where pi is the price paid, and the εis are

i.i.d. private information Type I extreme value payoff shocks. σ parameterizes seller

product differentiation.

Bargaining. BDKS assume sellers make simultaneous take-it-or-leave-it price of-

fers. We generalize by assuming that, before the εs are realized, the buyer sends

separate agents to each seller. Each agent-seller pair negotiates the price at which

the buyer would be able to purchase from that seller. After negotiations are complete,

the buyer observes the εs and makes their purchase choice based on the negotiated

prices with a purchase possible only if a price was agreed. We make the Nash-in-

Nash assumption (Collard-Wexler, Gowrisankaran, and Lee (2019)) that each buyer

agent-seller pair takes the price agreed by the other pair as given. We assume that

the bargaining weight of the buyer’s agent is a parameter τ , with the bargaining

weight of the seller 1 − τ . If τ = 1, buyers have “all of the bargaining power”, and

will extract all of the expected surplus from an agreement, whereas we will replicate

4At the boundaries of the state space, the evolution is necessarily restricted. For example, when
ei,t = 1 and qi,t = 0, firm i cannot forget (fi,t = 0), and when ei,t = M and qi,t = 1, firm i has to
forget (fi,t = 1).
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BDKS’s equilibria if τ = 0.

The Social Planner. We also compute outcomes given the choice probabilities

that would be used by a social planner buyer that maximizes discounted expected

total surplus (i.e., buyer utility less production costs) and only knows the current

values of the εs.5

Parameters. In the text we will assume σ = 1, κ = 10 and v = 10, although, with

no outside good, the value of v does not affect equilibrium choice probabilities. Our

focus will be on the technology parameters ρ and δ, and, especially, on what happens

as τ varies from 0 to 1.

If τ ̸= 0, what values of τ are “reasonable” or “relevant”? τ = 0.5, equal buyer-

seller bargaining power, is often assumed in applications. As we will illustrate, equi-

librium prices, and outcomes, when τ = 0.5 will often not be close to the averages of

prices when τ = 0 and τ = 1, as they would often be in the static model, because op-

portunity costs are endogenous. Alternatively, if one wants to interpret τ as reflecting

differences in buyer and seller patience in an alternating offer process taking place in

a negotiation, one could view our assumption that buyers are short-lived and sellers

long-lived as being most consistent with τs close to zero. Under this interpretation,

the main interest will be in how outcomes often change rapidly as τ increases from

zero.

3 Equilibrium and Outcomes

The equilibrium concept is symmetric and stationary Markov Perfect Nash equi-

librium (MPNE, Maskin and Tirole (2001), Ericson and Pakes (1995), Pakes and

McGuire (1994)). We now describe two alternative characterizations of equilibria,

5One can view our social planner as analogous to a single long-lived buyer in SJHY’s model who
faces prices equal to prodution costs each period.
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how we measure outcomes and incentives, and results that can be proven analyti-

cally.

3.1 Formulation of Equilibrium Conditions for Prices and
Values.

BDKS specify equations for equilibrium seller values, V S∗(e), defined at the start of

each period, and prices, p∗(e). We extend their formulation to allow for bargaining.

Symmetry implies that we only need to define equations for the prices and values of

seller 1 (i.e., p∗2(e1, e2) = p∗1(e2, e1) and V S
∗
2(e1, e2) = V S∗

1(e2, e1)).

Beginning of period value for firm 1 (V S):

V S∗
1(e)−D∗

1(e)(p
∗
1 (e)− c(e1))−

∑
k=1,2

D∗
k(e)µ

S
1,k(e) = 0, (2)

where µS
1,k(e) is seller 1’s continuation value when seller k makes the sale,

µS
1,k(e) = β

∑
∀e′1,t+1|e1,t

∑
∀e′2,t+1|e2,t

V S∗
1(e

′
1,t+1, e

′
2,t+1) Pr(e

′
1,t+1|e1,t, k) Pr(e′2,t+1|e2,t, k), (3)

and Pr(e′i,t+1|ei,t, k) is the probability that i’s state transitions from ei,t to e
′
i,t+1 when

qk,t = 1. Given prices, the probability that qk,t = 1, Dk(e), is

Dk(e) =
exp

(
v−pk(e)

σ

)
exp

(
v−p1(e)

σ

)
+ exp

(
v−p2(e)

σ

) . (4)

D∗
k(e) is the choice probability given equilibrium prices.

Negotiated prices (p): Our bargaining assumptions imply that, given p2, p
∗
1(e) will be
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determined as

p∗1(e) = argmax
p1

(CS(p1, p2, e)− CS(p2, e))
τ × ...(

D1(e)(µ
S
1,1(e) + p1 − c(e1)) + (1−D1(e))µ

S
1,2(e)− µS

1,2(e)
)(1−τ)

(5)

where CS(p1, p2, e) = σ log
(∑

k=1,2 exp
(

v−pk(e)
σ

))
(i.e., the expected future surplus

of the buyer when it is able to choose from both firms). CS(p2, e) = v − p2(e) is

the buyer’s expected surplus if there is no agreement with seller 1 and seller 2 is the

buyer’s only option. Equilibrium p∗1(e) will therefore solve the first-order condition

τ
∂CS(p∗1(e), p2, e)

∂p1

(
D∗

1(e)(µ
S
1,1(e) + p∗1(e)− c(e1)) + (1−D∗

1(e))µ
S
1,2(e)− µS

1,2(e)
)
+ ...

(1− τ) (CS(p∗1(e), p2, e)− CS(p2, e))

(
D∗

1(e) +
∂D∗

1(e)

∂p1

(
p∗1(e)− c(e1) + µS

1,1(e)− µS
1,2(e)

))
= 0,

(6)

where
∂CS(p∗1(e),p2,e)

∂p1
= −D∗

1(e) and
∂D∗

1(e)

∂p1
= −D∗

1(e)(1−D∗
1(e))

σ
. Algebraic manipulation

shows that this can be simplified to

− τD∗
1(e)(p

∗
1(e)− ĉ1(e))+ (1− τ) [σ − (1−D∗

1(e))(p
∗
1(e)− ĉ1(e))] log

1

1−D∗
1(e)

= 0.

(7)

ĉ1(e) = c(e1)−(µS
1,1(e)−µS

1,2(e)) is seller 1’s opportunity cost of a sale where (µS
1,1(e)−

µS
1,2(e)) is the increase in the seller’s continuation values (equation (3)) when it, rather

than its rival, makes the sale.

This first-order condition is the same as BDKS’s if τ = 0. If τ = 1, the µSs will

equal zero, and p∗1(e) = c(e1) will be the only solution.

3.2 Formulation of Equilibrium Conditions in Terms of Buyer
Choice Probabilities.

We can rewrite the equilibrium choice probability equations as

σ log

(
1

D∗
1(e)

− 1

)
− p∗1(e) + p∗2(e) = 0. (8)
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We will now show that prices can be expressed as functions of D∗
1s and parameters,

so that the equilibrium can be characterized by equations (8) only.

From equation (7), firm 1’s markup over its opportunity cost is

p∗1(e)− ĉ1(e) = Φ(D∗
1(e)) =

(1− τ)σ log 1
1−D∗

1(e)

τD∗
1(e) + (1− τ)(1−D∗

1(e)) log
1

1−D∗
1(e)

. (9)

Φ(D1) will denote the stacked vector of markups. Using Qk to denote the seller 1

state transition matrix when k makes a sale,

ĉ1 = c1 − β(Q1 −Q2)VS1, (10)

and

VS1 = (I− βQ2)
−1 [D1 ◦Φ(D1)]. (11)

where ◦ denotes the element-wise product of two vectors. Therefore,

p1 = Φ(D1) + c1 − β(Q1 −Q2)(I− βQ2)
−1[D1 ◦Φ(D1)]. (12)

There are M2 D∗
1s, but symmetry with no outside good implies D∗

1(e, e) = 1
2
∀e

and D∗
1(e, e

′) = 1 − D∗
1(e

′, e), so we can reduce the problem to M(M−1)
2

equations

and unknowns. This compares to 2M2 equations for prices and seller values in the

standard formulation. For M = 30, our new formulation reduces the problem from

1,800 equations to 435, and for M = 3 the reduction is from 18 equations to only 3.

3.3 Formulation of the Social Planner Problem.

We can find the choice probabilities that maximize the discounted value of expected

surplus by thinking of an infinitely lived buyer, with the same discount factor as the
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sellers, who pays the production cost associated with its choice. In this case,

DSP
1 (e) =

1

1 + exp
(

c1(e)−c2(e)+µSP
2 (e)−µSP

1 (e)

σ

)
where µSP

i is the continuation discounted surplus when seller i is chosen. In vector

form,

µSP
2 −µSP

1 = β(Q2−Q1)

(
I− β

∑
k=1,2

DSP
k ◦Qk

)−1 ∑
k=1,2

[
DSP

k ◦
(
σ log

1

DSP
k

+ v − ck

)]
,

(13)

where the last term reflects the expected surplus in each state given the choice prob-

abilities. We solve the social planner’s choice probabilities using these two sets of

equations.

3.4 Outcomes.

We calculate outcome measures assuming the state is (1,1) in t = 1.

Concentration. Following BDKS, expected market structure in period t is mea-

sured by

HHI t =
∑
∀e

λt(e)HHI(e)

where

HHI(e) =
∑
k=1,2

(
D∗

k(e)

D∗
1(e) +D∗

2(e)

)2

and λt(e) is the probability that a game will be in state e after t periods. The mini-

mum value of HHI t is 0.5. One could look at concentration at many different points,

but we will focus primarily on HHI32 as a measure of medium-run concentration.6

6For many parameters, HHIt converges slowly to a long-run value. For example, when M = 30,
ρ = 0.75 and δ = 0.023, HHIt ≈ 0.5 for t > 4, 000, but HHI1,000 ≈ 0.6.
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Surplus. With no outside good, v does not affect equilibrium strategies and out-

comes, so we exclude it from our surplus measures. TSt, expected total surplus in

period t, is calculated as the expected ε of the purchased good less the production

cost. This value will usually be negative. Our focus is on TSPDV , the present dis-

counted value of total surplus. TSSP is the maximized present discounted surplus

under a social planner. Consumer surplus is measured as the expected ε less the price

paid, and producer surplus as expected price paid less production costs.

3.5 Incentives.

Recall that seller 1’s opportunity cost of sale is ĉ1(e) = c(e1) − (µS
1,1(e) − µS

1,2(e))

where c(e1) is the current production cost. Besanko, Doraszelski, and Kryukov (2014)

recognize that the dynamic component, (µS
1,1(e) − µS

1,2(e)), can be expressed as the

sum of two incentives.

Definition 1 The firm 1 “advantage building” (AB) incentive is µS
1,1 − µS

1,0. The

firm 1 “advantage denying” (AD) incentive is µS
1,0 − µS

1,2.

µS
1,0 would be seller 1’s continuation value if the buyer was to purchase from neither

seller. This possibility is only hypothetical in the BDKS model, where there is no

outside good, but, as we will show, some interesting differences between AB and AD

incentives, defined in this way, still arise.

3.6 Analytical Results.

Our focus is on cases where M = 3 or M = 30, and dynamics, the size of the state

space and the possible existence of multiple equilibria make it difficult or impossible to

derive analytic results. However, building off BDKS’s results, one can show equilibria

are unique in some situations.

Proposition 1 In a model with any m ≤M ,
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1. if τ = 1, equilibrium prices will equal marginal production costs in all states for

all ρ and δ.

2. there will be a unique symmetric MPNE when

(a) δ = 0 for all ρ and τ , or

(b) τ = 1 for all ρ and δ.

Proof. See online Appendix A.1.

The social planner problem will also, of course, have a unique solution. Unique-

ness when δ = 0 reflects how logit demand implies a unique price equilibrium when

continuation values are fixed and how movements through the state space will be

unidirectional until the game reaches absorbing state (M,M) so that backwards in-

duction can be applied. When τ = 1, buyers extract all of the expected surplus and

prices must compensate sellers for their production costs.

We can prove more novel results when m =M = 2 and δ = 0. The M = 2 model

is tractable because, as D∗
1(1, 1) = D∗

1(2, 2) = 1
2
in any symmetric equilibrium and

the social planner solution, there is only one choice probability that can vary with τ .7

Proposition 2 For m = M = 2 and δ = 0, the unique symmetric equilibrium will

have the following properties

1. equilibrium D∗
1(1, 2)(τ) <

1
2
for all τ .

2. equilibrium D∗
1(1, 2)(τ) is strictly decreasing in τ .

3. for t ≥ 2, HHI t is strictly increasing in τ .

4. there exists a τ ∗ such that TSPDV (τ ∗) = TSSP , TSPDV (τ ∗) is strictly increasing

in τ for τ ∈ (0, τ ∗) and strictly decreasing in τ for τ ∈ (τ ∗, 1).

7This also facilitates a one-dimensional search for equilibria. We have never found multiplicity
with M = 2 for any δ.
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Proof. See online Appendix A.2.

Social welfare will be maximized when D∗
1(1, 2) = DSP

1 (1, 2). The key aspects

of the result are that D∗
1(1, 2)(τ), the probability that the laggard will catch up, is

monotonically decreasing in τ , so that, as τ increases, the state is more likely to be

asymmetric, and that D∗
1(1, 2)(τ = 0) is more than DSP

1 (1, 2) and D∗
1(1, 2)(τ = 1) is

less than DSP
1 (1, 2). Our computational analysis will show that asymmetric market

structures become more likely and efficiency is maximized for τs between 0 and 1

when we consider larger state spaces if LBD effects are significant and forgetting

rates are not too high.8

3.7 Numerical Methods for Finding Multiple Equilibria.

For given parameters, a single equilibrium can be calculated by solving either formu-

lation of the equilibirum equations, using the Pakes and McGuire (1994) algorithm

or, if δ = 0, using backwards induction. To track what happens to equilibrium out-

comes when we vary a single parameter, we use BDKS’s numerical homotopy method

to trace the equilibrium correspondence. We will call a homotopy where a parame-

ter α is varied an “α-homotopy”. When we want to identify all equilibria, we also

follow BDKS by criss-crossing the parameter space using homotopies, starting new

homotopies when additional equilibria are found.

The homotopy method is not guaranteed to find all equilibria in this model, and,

in practice, many homotopies stall. For any given set of parameters, our homotopy

results must carry the caveat that we could be missing equilibria. However, we are

confident in our broad results. We develop an alternative approach for the M = 3

model to finidng all equilibria, detailed in online Appendix B.2, that gives identical

results. For theM = 30 version of the closely-related BDK model, SJHY show that a

third approach, which identifies when certain types of equilibria exist, also produces

8If M = 2, Proposition 2 holds for any ∆(2) in a slightly changed model where ∆(1) is set equal
to zero (so an ei,t = 1 firm will always move to ei,t+1 = 2 if it makes a sale).
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results consistent with an extensive homotopy search.

4 Bargaining, Concentration andWelfare withM =

3

A model with m =M = 3 is too simple to represent any industry, but it allows us to

follow how bargaining power affects every price and choice probability.

4.1 Bargaining and the Existence of Multiple Equilibria.

Multiple equilibria are widely understood to complicate analysis of comparative stat-

ics and counterfactuals. Uniqueness is guaranteed when τ = 1, but it is unclear a

priori whether multiple equilibria will be more common when sellers set prices or

when bargaining power is split between buyers and sellers.

We identify equilibria by running sequences of ρ and δ homotopies for discrete

values of τ in 0.05 steps. The set of identified equilibria are identical when we use our

alternative method. The colored areas in Figure 1 indicate (ρ, δ) combinations with

multiple equilibria (we never find more than three) for τs up to 0.2. For τ ≥ 0.25

and δ ≥ 0.1 equilibria are always unique. While there are a few technology parame-

ters, marked in green, where multiple equilibria are introduced when τ increases, the

clear pattern is that allocating more bargaining power to buyers tends to eliminate

multiplicity.

4.2 Bargaining, Equilibrium Prices and Outcomes for ρ = 0.3
and δ = 0.03.

Figure 2 shows how choice probabilities, prices, concentration and surplus change

when we trace equilibria using a τ -homotopy for ρ = 0.3 and δ = 0.03. Equilibria are

unique, for all τ , for these technology parameters. Online Appendix Table C.2 shows

the exact prices and sale probabilities in each state, and the distributions of states

after 4 and 32 periods, for τ = 0, τ = 1 and the social planner solution. c(ei) = 10,
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3 and 1.483 for ei = 1, 2, 3 so that LBD effects are substantial. ∆(ei) = 0.03, 0.059

and 0.087 so that high know-how firms are unlikely to experience depreciation in any

given period even if they do not make a sale.

It is useful to begin by understanding the difference between the social planner’s

purchase strategy (choice probabilities indicated by the horizontal dashed lines in

Figure 2(a)) and the choices of a myopic buyer facing prices equal to production

costs, the equilibrium when τ = 1.

When τ = 1 a myopic buyer makes choices based on current production costs and

current εs. An ei = 1 laggard has such a large cost disadvantage in asymmetric states

that it is very unlikely to make a sale. This results in the industry state being (3,1)

with probability 0.996 after 32 periods, and the seller with the lower ε making the

sale with probability close to 1
2
from the second period onwards.

The social planner recognizes that a second low cost seller will increase expected

future εs. The social planner’s willingness to invest in a second low cost option is

illustrated by how DSP
1 (1, 3) > DSP

1 (1, 2) > D∗
1(1, 2)(τ = 1), even though c2(1, 3) <

c2(1, 2), and D
SP
1 (2, 3) > 1

2
>> D∗

1(2, 3)(τ = 1). The social planner solution implies

moderate concentration after four periods, but the industry will be in the highest

surplus state, (3,3), after 32 periods with probability 0.789.

Besanko, Doraszelski, and Kryukov (2019a) decompose efficiency losses into a loss

of surplus in each state relative to the social planner outcome, which they label the

“PR distortion”, and the loss because states are not visited with the probabilities that

the social planner would choose (“MS distortion”).9 Figure 2(e) (right axis) shows

9Define

DWLPR
β =

∞∑
t=0

βt
∑
e

λt(e)
[
TSSP (e)− TS(e)

]
and

DWLMS
β =

∞∑
t=0

βt
∑
e

[
λSP
t (e)− λt(e)

]
TSSP (e).

where TS(e) and TSSP (e) represent the value of expected εs less production costs given equilib-
rium and social planner choice probabilities in state e respectively, and λt(e) and λSP

t (e) are the
probabilities the game is in state e after t periods. DWLPR

β +DWLMS
β is the difference between
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the values of these two distortions. When τ = 1, the buyer maximizes surplus in each

state, whereas the social planner’s choice may forgo some current surplus. Therefore,

DWLPR
β is negative, but DWLMS

β is positive and large as state (3,3) is rarely visited.

The sum of these distortions indicates that TSPDV is lowered by around 2.4 compared

to the social planner optimum.

Now consider the equilibrium when τ = 0. Sellers charge markups over their op-

portunity costs and their opportunity costs reflect dynamic incentives (i.e., expected

future profits), so that DWLPR
β is positive. However, relative to τ = 1, these effects

may move sale probabilities and state transitions in a socially desirable direction.

For example, D∗
1(1, 2) is increased by the laggard having larger dynamic incentives

(shown below), lowering its opportunity cost of sale, and the leader having a larger

markup. In fact, D∗
1(1, 2)(τ = 0) > DSP

1 (1, 2) and D∗
1(1, 3)(τ = 0) > DSP

1 (1, 3), and

D∗
1(2, 3)(τ = 0) > 1

2
even though it is slightly lower than DSP

1 (2, 3). These D∗
1s imply

that the state is more likely to move from (2,1) to (2,2) (rather than (3,1)) than the

social planner would choose, but they also imply that state (3,3) will be reached more

quickly. As a result DWLMS
β is negative, and the decrease in TSPDV from the social

planner optimum is small.

Looking between these polar cases, we see that HHI4 and HHI32 (concentra-

tion) increase monotonically in τ , and that TSPDV is maximized for τ ≈ 0.25. The

maximized surplus is slightly lower than the social planner achieves as there is no τ

where all three asymmetric state D∗
1s match their social planner values (in particular,

no equilibrium gives the laggard a high enough probability of selling in state (2,3)).

Concentration and consumer surplus (panel (f)) increase significantly between 0 and

0.5, with producer surplus falling sharply, and several prices, including p∗(1, 1) and

p∗(2, 2), are non-monotonic in τ .

Cabral and Riordan (1994) reason that one firm will emerge as dominant when

prices that satisfy the properties of “increasing dominance” (ID, lower cost firms

social planner and equilibrium surplus. Besanko, Doraszelski, and Kryukov (2019a) also consider a
third component related to entry and exit which is not relevant in the BDKS model.
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always set lower prices) and “increasing increasing dominance” (IID, p∗1(e) − p∗2(e)

decreases in e1). Prices equal to costs satisfy these properties, and concentration is

excessive when τ = 1, whereas τ = 0 equilibrium prices do not satisfy these properties

(e.g., p∗1(2, 1) < p∗1(3, 1)) and concentration is too low. However, consistent with an

observation of BDKS, ID and IID are not necessary for concentration to be either

high or excessive: for example, for 0.25 < τ < 0.445, prices do not satisfy these

properties even though HHI4 is close to one and much larger than the social planner

would choose.

4.3 Bargaining Power on Dynamic Incentives.

We now explore the relationship between τ and the equilibrium values of dynamic

incentives. This relationship will explain why several prices have U-shaped relation-

ships with τ and why concentration and some measures of surplus (including TSPDV

in the M = 30 model) change quickly as τ increases from zero.

Figure 3 illustrates different effects of varying τ . We focus primarily on state (1,1)

as there is only one price. Panel (a) shows how p(1, 1) would change with τ when

continuation values are held fixed at their τ = 0 values. This isolates the markup

reduction effect that occurs in static models. p(1, 1) falls monotonically, and close to

linearly, to equal opportunity costs when τ = 1.

The source of the non-monotonicity therefore lies in how continuation values vary

with τ . One can consider τ as having two effects on continuation values. First, fixing

industry evolution, increasing τ reduces seller continuation values, and shrinks the

difference between the value of making a sale and the rival making a sale, as the

share of surplus in every future negotiation is reduced. Panel (b) isolates this effect

by showing the equilibrium price that sellers would set (i.e., τ = 0 static game) when

τ = 0 continuation values are multiplied by one minus the τ value on the x-axis. As

future profits shrink, a seller’s opportunity cost rises towards its production cost, and

the take-it-or-leave-it p(1, 1) rises monotonically.
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Second, reallocating bargaining power will change how market structure evolves.

In particular, the static markup reduction effect will increase the sale probability

of the firm with the larger markup. If this firm is the leader, which it is in all

asymmetric states when τ = 0 for our parameters, then this will tend to make leads

last longer. If leads would be short-lived when τ = 0, this lead-lengthening effect

can cause the relative value of acquiring or preserving a lead to increase in τ , so the

leader’s opportunity cost falls, lowering the leader’s price.

To illustrate, consider what happens in state (2,1), which is the state that seller

1 in state (1,1) wants to reach. A firm in state (2,1) expects its lead to last for 5.4

periods when τ = 0. This increases to 11.3 and 196 periods when τ = 0.25 or 0.5

respectively. Correspondingly, a firm in state (2,1) loses its lead within three periods

with probability 0.378 when τ = 0, and with probabilities 0.168 and 0.009 when

τ = 0.25 and τ = 0.5 respectively.

Panel (c) shows AB and AD incentives in state (2,1) for both sellers. This panel

also reveals that changes in the laggard’s dynamic incentives also make the leader

more likely to sell in (2,1). Adding its AB and AD incentives together, the laggard

has a larger dynamic incentive than the leader when τ = 0, partially offsetting the

laggard’s production cost disadvantage. However, as τ increases, the leader’s AD

incentive increases as its lead is expected to last longer if its rival does not make a

sale, while the reduction in equilibrium p∗(2, 2) reduces laggard’s AB incentive. The

leader’s dynamic incentive exceeds the laggard’s for τ ≥ 0.25.

Panel (d) shows that all three equilibrium µS
1 (1, 1) continuation values decline

monotonically in τ increases but that the equilibrium AB incentive increases until

τ ≈ 0.4, and the opportunity cost of sale decreases until τ ≈ 0.35. Panel (e) repeats

the exercise in panel (b) but using these equilibrium continuation values. The changes

in continuation values (i.e., dynamic effects) now lower the price, reinforcing the static

markup effect, until τ ≈ 0.37. This explains why p∗(1, 1) initially declines in τ (Figure

2(b)). For larger τ , the shrinkage of continuation values, and the implied increase in
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opportunity costs, is the stronger dynamic effect of increasing τ . p∗(1, 1) therefore

increases. While changes in p∗(1, 1) do not change concentration, the reductions in the

leader’s markup and its opportunity cost increase the leader’s probability of making

sales in (2,1) and (3,1) (Figure 2(a)) which does cause concentration to increase.

The solid lines in panel (f) show that the discounted expected value of sellers’

combined AB and AD incentives given equilibrium play. Both AB and AD incentives

increase and then decrease in τ . The dotted lines show what the discounted values

would be if we use the equilibrium values of the incentives in each state but assume

τ = 0 equilibrium state transitions. The differences between the solid and dotted

lines highlight how the non-monotonicity in dynamic incentives is accentuated by

how play shifts towards states such as (3,1), where dynamic incentives are larger, as

τ increases from zero.

Generalization to Other Technology Parameters. Online Appendix C.2 pro-

vides an analysis of how these patterns generalize to other (ρ, δ) technology param-

eters. The pattern that concentration increases with τ holds for most parameters,

but is not universal. Online Appendix C.3 shows an example with very limited LBD,

where a twist in the equilibrium correspondence associated with multiple equilibria

causes concentration to fall, at a low level, as τ increases from zero. Other examples,

with significant LBD, involve very high concentration which declines slightly as τ

increases from 0.5 to 1.

The other patterns that we have described (e.g., TSPDV and the discounted value

of dynamic incentives having inverted-U relationships with τ) are observed when

ρ < 0.8 (i.e., costs when ei = 3 are no more than 70% of the costs when ei = 1)

and δ ≤ 0.05. For δ > 0.05, forgetting is likely and a laggard with infrequent sales

is unlikely to catch up, so that concentration is high and leads tend to be long-

lasting even when τ = 0. The effect of shrinking continuation values therefore tends

to dominate the lead-lengthening effect and the values of dynamic incentives are
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maximized when τ = 0. For δ > 0.1, it is too costly for the social planner to maintain

two low cost sellers, and the planner’s strategy shifts towards maximizing current

surplus. As a result, efficiency is maximized for τs close to, or equal to, 1.

Outside Option and Product Differentiation. We have assumed that σ = 1

and that buyers have no outside option. Online Appendix C.4 relaxes these assump-

tions. Outcomes are quite robust to moderate variation in these assumptions, such

as allowing an outside good that is only really competitive when the sellers have the

lowest know-how. However, significant reductions in product differentiation (lower

σ) result in more concentrated equilibrium outcomes, and leads that are expected to

last longer, for all τ . Consistent with the logic described so far, this tends to mean

that dynamic incentives will be strongest when τ = 0.

4.4 Subsidies.

We consider schemes that implement socially optimal choice probabilities by taxing or

subsidizing sales by the laggard.10 Given socially optimal choice probabilities (DSP
1 ),

we can solve for M2 prices and M(M−1)
2

subsidies (s1, negative for a tax) using M2

equations

p1(e)− p2(e) = σ log

(
1

DSP
1 (e)

− 1

)
, (14)

and M(M−1)
2

stacked equations

p1 + s1 = Φ(DSP
1 ) + c1 − β(Q1 −Q2)(I− βQ2)

−1[DSP
1 ◦Φ(DSP

1 )]. (15)

Linearity in p and s implies that only one scheme can implement the social optimum

but this scheme could support equilibria that are not optimal (see M = 30 example

10With no outside good, sale probabilities in symmetric states are efficient so it is natural to
consider schemes that impose taxes or subsidies in asymmetric states. Taxes and subsidies are fully
passed through to buyers when τ = 1.
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Figure 4: Subsidy Schemes and Welfare as a Function of τ for ρ = 0.3 and δ = 0.03
in the M = m = 3 Model.

(a) Optimal Subsidy Levels (b) TSPDV Under τ = 0 Optimal Subsidies.

below).

Figure 4(a) shows the optimal subsidies for our example technology parameters.

Laggard sales are taxed in states (1, 2) and (1, 3) when τ = 0, but they are subsidized

in all states when τ > 0.4. Further calculations show that the optimal scheme can

have non-monotonic effects on some outcomes: for example, relative to a no subsidy

scenario, discounted consumer surplus increases when τ ≈ 0 and τ > 0.6, but it falls

slightly for τ ≈ 0.3.

We can also ask how welfare would change for different τs if a subsidy scheme

is designed assuming τ = 0. τ = 0 would be the natural assumption for a policy

designer to make based on the existing literature. Figure 4(b) shows that the scheme

would lower welfare, relative to having no scheme at all, for any τ that is larger than
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0.06, a result that implies that buyers only have to have limited bargaining power

for the subsidy policy to be welfare-reducing. The intuition for this result is that the

τ = 0 scheme aims to increase industry concentration which, with no subsidies, would

be close to optimal for τs that are not too large and already excessive for higher τ .

Online Appendix C.5 shows that τ = 0 subsidies would also lower welfare if τ = 0.2

for a wide range of technology parameters with low δs. For higher δs, some of the

τ = 0 subsidies are so large that we cannot solve for equilibria with alternative τs.

5 M = 30 Model

BDKS use the m = 15 and M = 30 model as a potentially stylized representation of

a real-world industry. We describe how the features that we observe in the M = 3

model carry over to this larger state space model before examining optimal subsidies

and some alternative policy counterfactuals.

Our policy analysis will assume ρ = 0.75 (so that costs for ei ≥ 15 are just over

30% of their ei = 1 value) and δ = 0.023 (implying ∆(30) ≈ 0.5), which we will refer

to as the illustrative technology parameters. When considering what happens with no

policies, we look across 0.6 ≤ ρ ≤ 1, reflecting the range of empirical progress ratios

identified in the literature survey of Ghemawat (1985), and 0 ≤ δ ≤ 0.2. δ = 0.2

implies almost certain depreciation of know-how for ei ≥ 20.

5.1 Equilibria with No Policies.

The qualitative results from our M = 3 analysis carry over to the larger state space.

First, multiple equilibria are eliminated once τ is even moderately high. Based on a

homotopy analysis to identify equilibria for τ values in 0.05 increments, Figure 5(a)

shows the smallest τs for which multiple equilibria are identified, and (b) shows the τ

values for which equilibria are unique for all larger τs. Multiplicity exists for a wider

range of technologies than in the M = 3 model when τ = 0, but we still find that all
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Figure 5: Multiplicity in theM = 30 Model. In panel (a) the white regions correspond
to parameters for which multiplicty is never identified.

(a) Smallest Values of τ where Multiple
Equilibria Are Identified.

(b) Smallest Values of τ ′ where Equilibria
are Unique For All τ ≥ τ ′.

equilibria are unique once τ ≥ 0.25. We have undertaken further analysis to try to

identify if there is a pattern as to the types of τ = 0 equilibria (e.g., the nature of

pricing strategies) that are on homotopy paths that ultimately reach τ = 1 but we

have not been able to identify a general pattern. See additional discussion in online

Appendix C.3.

Second, as we detail in online Appendix D.2, the pattern that equilibrium con-

centration increases with τ , at least until it reaches a very high level, is fairly general

when LBD effects are not too small.11 HHI32 is lower than the social planner would

choose when τ = 0 for most technologies. For ρ < 0.85 and δ < 0.03, equilibrium

HHI32 is low when τ = 0, very high when τ = 1, and close to the level that the social

planner would choose between τ = 0.25 and τ = 0.5. Consistent with this feature,

Figure 6(a) shows that τs between 0.2 and 0.5 maximize surplus for a wide range of

technologies.

11There are parameters with very limited LBD and moderate-to-high forgetting probabilities where
HHI32 is above the social planner level, and where it falls when τ increases, before following an
upward path. See online Appendix D.3 for an example.
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Figure 6: Values of τ Maximizing TSPDV and the PDV of Seller Dynamic Incentives
(the sum of AB and AD incentives) in the M = 30, m = 15 model. We take the
maximum value across equilibria when multiple equilibria exist for given τ .

(a) τ Maximizing TSPDV (b) τ Maximizing PDV AB+AD Incentives

Third, for δ < 0.03 and ρ < 0.85, we also see that τs between 0.2 and 0.5 maximize

sellers’ dynamic incentives (Figure 6(b)). The increase in dynamic incentives as τ

increases from zero is associated with leads lasting significantly longer: for example,

for the illustrative technology parameters, the PDV of dynamic incentives increases

from around 80 when τ = 0 to around 170 when τ = 0.2. This is associated with the

number of periods that a firm in state (2,1) expects its lead to last increasing from

90 to 300, and the probability that it loses its lead within three periods falling from

0.119 to 0.009.12

The increases in dynamic incentives also leads to a divergence between predicted

outcomes in the dynamic model and the outcomes that would be predicted by a

model where sellers are assumed to behave statically even though know-how can

evolve. Figure 7 illustrates this divergence by showing the values of HHI32, HHI200

and TSPDV along τ -homotopy paths for these two types of equilibrium given the

illustrative technology parameters. Equilibria will always be unique when sellers

12These statistics are associated with the τ = 0 equilibrium on the τ -homotopy path that stretches
from τ = 0 to τ = 1 (see Figure 7).
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Figure 7: Concentration and Welfare Outcomes with Dynamic and Static Equilibrium
Seller Behavior as a Function of τ for ρ = 0.75 and δ = 0.023 with no policies.

(a) HHI32 and HHI200 (b) TSPDV

ignore dynamic incentives, and they will coincide with the dynamic equilibrium when

τ = 1. When τ = 0, concentration levels in the three dynamic equilibria and the

static equilibrium are similar, but equilibrium concentration increases much more

quickly as τ increases in the dynamic model, and HHI32 actually falls, by a small

amount, as τ increases from 0.5 to 1. The difference in TSPDV given dynamic and

static behavior is maximized for τ ≈ 0.2, where the dynamic equilibrium gets very

close to the planner optimum.

5.2 Subsidy Policies.

We now turn to the policy analysis, by considering optimal subsidies in the M = 30

model, before considering alternative policies to promote competition. We will focus

on the illustrative technology parameters, as possibly reflecting an industry with
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Figure 8: Optimal Subsidies and Welfare under τ = 0 Subsidies as a Function of τ
for the Illustrative Technology Parameters. The subsidy is given to the laggard when
it makes a sale, and a negative number is a tax.

(a) Optimal Subsidies for Selected States (b) Total Surplus Under τ = 0 Subsidies

fairly strong LBD effects and some depreciation. We have found that some other

technologies support many equilibria for alternative policies. Online Appendix D.3

shows some policy results for technology parameters with limited LBD.

Figure 8(a) shows optimal laggard subsidies in four different states as a function

of τ . The optimal subsidy in state (1,2) and the optimal tax on the laggard in state

(1,15) change dramatically as τ increases from zero, illustrating how small deviations

from the price-setting assumption would need to be accounted for in policy design.

The direction of the τ = 0 subsidies may also appear counterintuitive. When

τ = 0, equilibrium concentration is lower than the social planner would choose. So

why is it optimal to subsidize sales by the laggard?

The reason lies in how the future evolution of market structure affects dynamic
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incentives. The social planner’s evolution, which is being implemented, will lead to

a firm in (3,1) being likely to preserve its lead for a long-time. Under this evolution,

the dynamic incentives of a τ = 0 leader in state (2,1) would be extremely large (its

AB incentive is 127.3 and its AD incentive is 80.7) without subsidies, implying the

leader would make a sale with a probability that is actually much higher than the

social planner wants. Therefore, a laggard subsidy is appropriate. Similarly, because

the social planner’s choices would lead the laggard to make most of the sales once

the leader has know-how above m, the leader’s dynamic incentives in (1,15) would be

much smaller than the laggard’s so that a tax on the laggard is appropriate.

The red lines in Figure 8(b) show TSPDV under the subsidies that would be

optimal if τ = 0. The black line shows TSPDV in the no subsidy equilibrium. When

τ is very small, τ = 0 optimal subsidies support multiple equilibria with different

welfare levels. The only equilibrium when τ ≥ 0.04 implies that τ = 0 optimal

subsidies lead to lower welfare than with no policy, further illustrating the importance

of knowing the value of τ when determining policies.

5.3 Policies to Increase Competition.

We use the illustrative technology parameters to analyze policies that might be ex-

pected to “promote competition” (i.e., more symmetric market structures). Note

that concentration is too low, at least initially, for these parameters when τ = 0, so

one might think of our analysis as primarily trying to understand the costs of the

types of policies that have been suggested in industries where dynamic competition

is important, whereas, if τ = 0.5, one might read our analysis as assessing whether

the welfare benefits of increased seller symmetry are offset by the distortions that

the policies will introduce. We will also see that, for higher values of τ , some of the

policies can also have unexpected effects on market structure.
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5.3.1 Alternative Policies.

Restriction on Market Concentration. Benkard (2004), analyzing the mar-

ket for wide-bodied commercial aircraft, considers a counterfactual where a limit

is imposed on the market share of the largest firm in a given quarter.13 In our

duopoly single-buyer-per-period model, we implement the share restriction as a soft

constraint by assuming that a market leader has to pay a compliance penalty of

χ×max {0, Di − ψ}2 whenever its sale probability is above a threshold ψ > 0.5. As

χ increases, it becomes more costly for a firm to have a high market share.14 We

calculate TSPDV assuming that compliance penalties are not costs to society. The

results presented in the paper assume that ψ = 0.75, so that policy maker aims that

the leader should be no more than three times as likely as the laggard to make a

sale, and χ = 50, a value that is large enough that the constraint is rarely breached

in equilibrium. See online Appendix D.4 for an analysis of how concentration and

TSPDV change with the assumed level of χ.

Incorporating this penalty, the first-order condition for the negotiated price be-

comes

−τ
[
D∗

1(e)(p
∗
1(e)− ĉ1)− χmax {0, D∗

1(e)− ψ}2
]
+ (1− τ) log

(
1

1−D∗
1(e)

)
×

[σ − (1−D∗
1(e))(p

∗
1(e)− ĉ1) + 2χ(1−D∗

1(e))max {0, D∗
1(e)− ψ}] = 0,

(16)

and the equation for the seller’s value becomes

V S∗
1(e)−D∗

1(e) (p
∗
1(e)− c(e1))−

∑
k=1,2

D∗
k(e)µ

S
1,k(e)− χmax {0, D∗

1(e)− ψ}2 = 0.

(17)

13While absolute restrictions on market shares are rare, market shares can play an important role
in determining potential liability for actions that agencies or rivals claim are anticompetitive.

14However, smaller values of χ can make it more likely that the game is in states where the leader
has a large share, and actually increase expected penalty costs.
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Restrictions on Pricing Incentives. Besanko, Doraszelski, and Kryukov (2014)

and Besanko, Doraszelski, and Kryukov (2019b) consider the effects of alternative

limitations on the dynamic incentives that firms are able to consider using the BDK

model, motivated by alternative standards for assessing prices to be predatory.15 We

consider how equilibrium outcomes change when a leader16:

� is unable to consider dynamic incentives at all (i.e., the leader has to use an

opportunity cost that equals its current production cost).

� is unable to consider AD incentives, but can consider AB incentives, the level

of which may change endogenously.

Restrictions on Pricing. An easier-to-implement restriction would prevent the

leader from setting a price below its current production cost. Below-cost pricing is

often viewed as a necessary, but not sufficient, condition for pricing to be viewed as

predatory.17

We find equilibria using the homotopy method with an additional set of equations

associated with Lagrangian constraints. We find an initial equilibrium using an itera-

tive guess-and-verify approach to identify states where the constraints on the leader’s

price bind.

Trigger Policies. In practice, political pressure to promote competition may arise

only once one firm is established. The social planner also wants to aim for symmetry

15While the lack of exit may appear to make the BDKS model a less attractive setting for con-
sidering rules motivated by the predation literature, the literature on anticompetitive conduct (e.g.,
Caves and Porter (1977), Lieberman (1987)) does not assume exit must be possible, and know-how
depreciation allows a firm in the BDKS model to try to weaken its rival in a wide range of states.

16We have also computed some results imposing these restrictions on both firms, with the no
dynamics case corresponding to the static equilibrium considered above. However, allegations of
anticompetitive conduct usually focus on the market leader, so focusing on policies that target the
leader seems more relevant.

17See discussion in the Department of Justice 2008 report “Competition and Monopoly: Single-
Firm Conduct Under Section 2 of the Sherman Act”, https://www.justice.gov/sites/default/
files/atr/legacy/2009/05/11/236681.pdf. Of course, application would entail many choices
about the appropriate way to measure costs.
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once one firm has lowered its costs. We therefore also compute equilibria under “trig-

ger versions” of the policies listed above, meaning that the policy will be introduced

as soon as one firm reaches know-how state e′ and will then last forever. We assume

players know the value of e′ when the game begins.

Multiplicity of Equilibria. For the illustrative technology parameters, we find

some multiplicity for small τ under the concentration restriction and Leader p ≥ mc

policies, but the predictions across these equilibria, and the equilibria with no policies,

are sufficiently similar that they do not complicate our conclusions. Based on our

searches, which do identify multiplicity for other technology parameters, equilibria

under the incentive policies are unique.

5.3.2 Predicted Policy Effects.

Figure 9(a)-(d) shows how the policies change HHI32, TSPDV and PSPDV as a

function of τ . The only policy to affect outcomes when τ = 1 is the concentration

restriction policy as the seller is able to avoid the compliance penalty by not agreeing

a price.

Ignoring the slight complications in interpretation caused by multiple equilibria

when τ is small, all policies weakly lower expected medium- and long-run concentra-

tion for τ < 0.8. However, this reduction is associated with a softening of competition

in low know-how states which leads to discounted seller surplus increasing, and a loss

in social welfare as production costs are expected to fall more slowly. The policies

decrease TSPDV the most when τ ≈ 0.2, reflecting the efficiency of the no policy

outcome. Comparing across policies, the p ≥ mc policy has the smallest effects, re-

flecting how, with no policies, prices are significantly below production costs in only

a relatively small set of states.18

For 0.8 ≤ τ ≤ 1, the No Leader AD policy increases TSPDV (and CSPDV , not

18Online Appendix D.1 lists prices in a subset of states in the no policy τ = 0 equilibria.
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Figure 10: The Present Discounted Value of Sellers’ AB and AD Incentives With and
Without the No Leader AD Policy for the Illustrative Technology Parameters.

shown), and, for 0.9 ≤ τ < 1, it also increases HHI32. While applications would

rarely assume that τ > 0.8, these changes illustrate the subtle ways that dynamic

incentives can interact. Figure 10 shows the PDV of dynamic incentives with no

policies, and the value of dynamic incentives that sellers are allowed to consider under

the No Leader AD policy. For small and moderate levels of τ , the policy significantly

reduces the sum of considered dynamic incentives, but, for τ > 0.8, the sum increases

as AB incentives under the policy increase. Further analysis shows that, for τ > 0.8,

the No Leader AD policy increases the relative size of the leader’s AB incentives in

low know-how states, even though buyers have most of the bargaining power, so that

the leader moves more quickly down its cost curve.

Figure 9(e) and (f) show that, while the policies lower TSPDV for τ < 0.8, they

may increase TS32 and TS200, reflecting how they increase the probability that there

will be two sellers with low costs. This also suggests that trigger strategies, with

appropriate e′s, might be able to enhance efficiency.

Figure 11 shows how TSPDV changes for four different τ , as a function of the
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Figure 11: Effects of Policies on TSPDV as a Function of the Trigger State for the
Illustrative Technology Parameters. The compliance costs of the Concentration Re-
striction policy are not counted as costs to society in total surplus calculations, al-
though they are costs to sellers.

(a) τ = 0 TSPDV (b) τ = 0.25 TSPDV

(c) τ = 0.5 TSPDV (d) τ = 0.9 TSPDV
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trigger state e′. As none of the policies directly constrain sellers in state (1,1), the

outcomes when the trigger is e′ = 2 are identical to those when the policy is introduced

from the start of the industry. This explains why we observe the No Leader AD policy

raising welfare when τ = 0.9 and e′ = 2.

The figures show that, in fact, the trigger strategies do not raise TSPDV when

τ = 0.25 or τ = 0.5. Further analysis shows that TSPDV is reduced for τs even closer

to zero: for example, the incentive (concentration restriction) policies with triggers of

e′ = 20 lower TSPDV if τ > 0.06 (0.08), although the reductions in welfare are small

if τ > 0.8. Therefore, though equilibrium medium- or long-run concentration is too

high with no policies for τ = 0.25 or τ = 0.5, none of the considered pro-competition

policies raise efficiency.

The incentive and concentration restriction policies are, however, predicted to

raise TSPDV when τ = 0 and e′ is chosen so that the policy only applies once one

firm has reached, or almost reached, the bottom of its cost-curve (recall m = 15).

The increase in efficiency may seem surprising given that concentration is too low

when τ = 0 and there are no policies, but this is, in fact, exactly the reason why

efficiency increases. The laggard anticipates that the policy will help it catch-up

once the leader reaches e′. Therefore, the laggard’s incentives to compete before this

state is reached are reduced, and the leader moves down its cost-curve more quickly,

increasing concentration and surplus. This can lower medium-run surplus and raise

medium-run concentration: for example, TS32 is lower with the policies, than with

no policy, if e′ ≥ 13 and HHI32 increases if e′ ≥ 20.

6 Conclusion

The dynamic competition literature has assumed that sellers compete by setting prices

or quantities. The existing applied literature on bargaining has focused on settings

where either market structure is fixed or prices and market shares do not have direct
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effect on firms’ future competitiveness. We extend the dynamic competition and

applied bargaining literatures by embedding buyer-seller bargaining into an existing

and tractable model of dynamic price competition, with the standard assumption

that sellers make take-it-or-leave-it price offers nested as a special case. By doing

so, our model allows the allocation of bargaining power to affect market structure,

and endogenous market structure to affect sellers’ outside options, their dynamic

incentives and negotiated outcomes. These interactions are likely to be important in

the types of capital goods industries where negotiations are common and which have

motivated much of the policy-oriented dynamic competition literature in international

trade and industrial organization.

We find that, for a wide-range of technology parameters, the mark-ups that leaders

charge when they set prices causes leads to be relatively short-lived, so that sellers’

dynamic incentives are relatively weak and, because sellers move down their cost

curves relatively slowly, production costs are quite high. These patterns can change

quickly when buyers have even quite limited bargaining power, as mark-ups are re-

duced and longer lasting leads incentivize sellers to try to get ahead. As a result,

conclusions that would be drawn assuming sellers set prices may not generalize even

to cases where sellers have most, but not quite all, of the bargaining power.

We show how the allocation of bargaining power affect the design of optimal

subsidy policies and the effects of policies that might be expected to promote com-

petition. For example, subsidies that would be optimal with seller price-setting only

require small deviations from this assumption to be welfare-reducing. Of course, it is

an empirical question how bargaining power is actually allocated between buyers and

sellers, and our results suggest that the accurate estimation of bargaining power in

models with dynamic price competition is an important direction for future research.

While our framework naturally extends to considering forward-looking buyers (Sweet-

ing, Jia, Hui, and Yao (2022)), a convincing empirical analysis would likely need to

include additional real-world features, such as multi-unit and multi-period contracts,
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that the current paper has abstracted away from.
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ONLINE APPENDICES FOR “Bargaining and

Dynamic Competition” by Deng, Jia, Leccese and

Sweeting

April 2024

A Analytical Proofs

A.1 Proofs of Proposition 1.

Recall Proposition 1.

Proposition 1 In a model with any m ≤M ,

1. if τ = 1, equilibrium prices will equal marginal production costs in all states,

for all ρ and δ.

2. there will be a unique symmetric MPNE when

(a) δ = 0 for all ρ and τ , or

(b) τ = 1 for all ρ and δ.

Proof of Part 1. The structure of the proof is to show that V S must be zero in

every state, which implies that price will equal marginal production costs. From text

equation (9), τ = 1 implies that all markups Φ are equal to zero. Equation (11)

therefore implies that VS1 = 0, and equation (10) implies ĉ1 = c1, so that equation

(9) now implies p∗1(e) = c1(e) in all states.

Proof of Part 2(a). Follows from the recursive proof of Besanko, Doraszelski,

Kryukov, and Satterthwaite (2010), and the fact logit demand implies there can only

be one (static) MPNE in the absorbing state (M,M).
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Proof of Part 2(b). Uniqueness of prices follows immediately from the proof of

part 1, and the choice probabilities of a static seller are unique given prices.

A.2 Proof of Proposition 2.

Proposition 2 For m = M = 2 and δ = 0, the unique symmetric equilibrium will

have the following properties

1. equilibrium D∗
1(1, 2)(τ) <

1
2
for all τ .

2. equilibrium D∗
1(1, 2)(τ) is strictly decreasing in τ .

3. for t ≥ 2, HHI t is strictly increasing in τ .

4. there exists a τ ∗ such that TSPDV (τ ∗) = TSSP , TSPDV (τ) is strictly increasing

in τ for τ ∈ (0, τ ∗) and strictly decreasing in τ for τ ∈ (τ ∗, 1).

A.2.1 Characterization

Given M = 2 and δ = 0, the equilibrium is fully characterized by the equilibrium

condition for D∗
1(1, 2), which can be simplified to

H(x, τ)−H

(
1

2
, τ

)
= c(1)− c(2), (18)

where H(x) is defined as

H(x, τ) := log
1− x

x
−1− β + βx

1− β

[
Φ̃

(
x,

τ

1− τ

)
− (1− β)Φ̃

(
1− x,

τ

1− τ

)]
for x, τ ∈ [0, 1],

where Φ̃(x, z) is defined as

Φ̃(x, z) :=
log 1

1−x

zx+ (1− x) log 1
1−x

for x ∈ [0, 1] and z ∈ [0,∞), 19

19Φ̃(x,∞) is defined to be 0 for all x ∈ [0, 1].
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and is a reformulated version of the mark-up condition Φ(x, τ) where the second

argument in Φ̃(x, z) is τ
1−τ

.

As negotiated prices are a transfer from buyers to sellers, we can express expected

total surplus in any state as a function of the choice probabilities and firm costs only,

i.e.,
∑

k=1,2Dk(e)
(
log 1

Dk(e)
− ck(e)

)
which does not depend on τ . In the M = 2

and δ = 0 case, TSPDV , for a game starting at (1,1), can be written as the following

function of D1(1, 2),

TSPDV (x) =
β

1− β + βx

[
x log

1

x
+ (1− x) log

1

1− x
− (c(1)− c(2))x− log 2

]
+

log 2− βc(2)− (1− β)c(1)

1− β
.

We define DSP
1 as the choice probability that the social planner would choose in state

(1,2). The social planner, would, of course, use choice probabilities of 1
2
in states (1,1)

and (2,2) where the suppliers are symmetric, with the firm with the highest ε making

the sale.

When δ = 0 and x = D1(1, 2),

HHI t = (x2 + (1− x)2)(1− x)t−1 +
1

2
(1− (1− x)t−1)

for t ≥ 2 as the state will either be (1,2) with concentration (x2 + (1− x)2) or (2,2)

with concentration 1
2
.

A.2.2 Preliminary Results.

Lemma A.1 H(x, τ) is strictly decreasing in x ∈ (0, 1).

Proof of Lemma A.1. Since there is a unique equilibrium when δ = 0 for any

parameterization of c(e), H(x, τ) must be strictly monotone in x ∈ (0, 1). Otherwise,

there will be multiple equilibria—i.e., multiple solutions to (18)—for some value of

c(1)− c(2).
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It suffices to show that H(x, τ) is decreasing on some interval in (0, 1). When

τ = 1, it is easy to see that H(x, τ) is strictly decreasing x ∈ (0, 1). When τ < 1, we

have that Φ̃
(
x, τ

1−τ

)
strictly increases with x ∈ (0, 1). Therefore, H(x, τ) decreases

with x when Φ̃
(
x, τ

1−τ

)
> (1− β)Φ̃

(
1− x, τ

1−τ

)
. This completes the proof.

Lemma A.2 TSPDV (x) is strictly increasing in x ∈ (0, DSP
1 ) and strictly decreasing

in x ∈ (DSP
1 , 1), where DSP

1 ∈ (0, 1/2) solves

log
1

x
− 1

1− β
log

1

1− x
= c(1)− c(2)− β

1− β
log 2. (19)

Proof of Lemma A.2. The proof immediately follows from the fact that

dTSPDV (x)

dx
=

β(1− β)

(1− β + βx)2

{
log

1

x
− 1

1− β
log

1

1− x
−
[
c(1)− c(2)− β

1− β
log 2

]}
.

A.2.3 Proofs of Proposition 2

Proof of Proposition 2.1: equilibrium D∗
1(1, 2)(τ) <

1
2
for all τ . By Lemma A.1,

the left-hand side of (18) is strictly decreasing in x. It is clear that the left-hand side

equals 0 when x = 1
2
. Since the right-hand side is strictly positive, the solution must

be less than 1
2
.

Proof of Proposition 2.2: equilibrium D∗
1(1, 2)(τ) is strictly decreasing in τ .

Applying the implicit function theorem to (18) yields that

∂x

∂τ
= −

Hτ (x, τ)−Hτ

(
1
2
, τ
)

Hx(x, τ)
.

By Lemma A.1, Hx(x, τ) < 0, and by Proposition 2.1, x < 1
2
. So to complete the

proof, it suffices to show that Hτ (x, τ) < Hτ

(
1
2
, τ
)
for x ∈

(
0, 1

2

)
.
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Note that

Hτ (x, τ) = −1− β + βx

1− β

[
Φ̃z (x, z)− (1− β)Φ̃z (1− x, z)

] dz
dτ
, with z =

τ

1− τ
.

Therefore,

Hτ (x, τ) < Hτ

(
1

2
, τ

)
⇐⇒ −1− β + βx

1− β

[
Φ̃z (x, z)− (1− β)Φ̃z (1− x, z)

]
< −(2− β)β

2(1− β)
Φ̃z

(
1

2
, z

)
⇐⇒ −

[
Φ̃z (x, z)− (1− β)Φ̃z (1− x, z)

]
< − (1− β)(2− β)β

2(1− β)(1− β + βx)
Φ̃z

(
1

2
, z

)
.

(20)

In fact,

Φ̃z(x, z) = −
x log 1

1−x[
zx+ (1− x) log 1

1−x

]2 , and Φ̃z

(
1

2
, z

)
= − 2 log 2

(z + log 2)2
< 0.

So the right-hand side of (20) is decreasing in x ∈
(
0, 1

2

)
.

Next, we show that the left-hand side of (20) increases with x ∈
(
0, 1

2

)
. It suffices

to show that −Φ̃z (x, z) increases with x ∈
(
0, 1

2

)
. In fact,

−Φ̃zx (x, z) =

(
log 1

1−x
+ x

1−x

) [
zx+ (1− x) log 1

1−x

]
− 2x log 1

1−x

(
z + 1− log 1

1−x

)[
zx+ (1− x) log 1

1−x

]3
=
zx
(

x
1−x

− log 1
1−x

)
+ log 1

1−x

[
(1 + x) log 1

1−x
− x
][

zx+ (1− x) log 1
1−x

]3 .

It is easy to verify that x
1−x

> log 1
1−x

> x
1+x

for x ∈
(
0, 1

2

)
. As a result, −Φ̃zx (x, z) >

0.

Combining the facts that the right-hand side of (20) is decreasing in x ∈
(
0, 1

2

)
,

the left-hand side of (20) is increasing in x ∈
(
0, 1

2

)
, and both sides are equal at x = 1

2
,

we can conclude that (20) holds for x ∈
(
0, 1

2

)
. This completes the proof.
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Proof of Proposition 2.3: equilibrium expected concentration (HHI t) in

any period t ≥ 2, strictly increases in τ . The derivative of HHI t with respect

to x is, for t ≥ 2

−(1− 2x)(1− x)t−2(3 + t− 2x− 2tx)

2

which is negative for any x < 1
2
. As equilibrium D∗

1(1, 2) <
1
2
(Proposition 2.1) and

equilibrium D∗
1(1, 2) decreases in τ (Proposition 2.2), HHI t increases in τ .

Proof of Proposition 2.4 : there exists a τ ∗ such that TSPDV (τ ∗) = TSSP ,

and TSPDV (τ ∗) is increasing in τ for τ ∈ (0, τ ∗) and decreasing in τ for

τ ∈ (τ ∗, 1).

As TSPDV only depends on D∗
1(1, 2), TS

PDV (τ ∗) = TSSP if D∗
1(1, 2)(τ

∗) = DSP
1 .

Because D∗
1(1, 2)(τ) decreases with τ (Proposition 2.2), and Lemma A.2, the result

follows if

D∗
1(1, 2)(τ = 0) > DSP

1 > D∗
1(1, 2)(τ = 1).

By (18) and the monotonicity of H(x, τ) in x (Lemma A.1), the above inequality is

equivalent to

H(DSP
1 , 0)−H

(
1

2
, 0

)
−[c(1)−c(2)] > 0 > H(DSP

1 , 1)−H
(
1

2
, 1

)
−[c(1)−c(2)]. (21)

We first show that 0 > H(DSP
1 , 1)−H

(
1
2
, 1
)
− [c(1)− c(2)]. In fact,

H(DSP
1 , 1)−H

(
1

2
, 1

)
− [c(1)− c(2)] =

β

1− β

(
log

1

1−DSP
1

− log 2

)
< 0,

where the equality is due to that DSP
1 solves (19), and the inequality is due to that

DSP
1 < 1

2
(Lemma A.2).
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It only remains to show that H(DSP
1 , 0)−H

(
1
2
, 0
)
− [c(1)− c(2)] > 0. Note that

H(DSP
1 , 0)−H

(
1

2
, 0

)
− [c(1)− c(2)]

= log

(
1−DSP

1

DSP
1

)
− [c(1)− c(2)]−

[
1

(1− β)(1−DSP
1 )

− 1− β

DSP
1

− β(2− β)

1− β

]
−H

(
1

2
, 0

)
.

Again, substituting (19) into the right-hand side of the above equation yields that

H(DSP
1 , 0)−H

(
1

2
, 0

)
− [c(1)− c(2)] = L(DSP

1 )− L

(
1

2

)
,

where

L(x) :=
β

1− β
log

1

1− x
−
[

1

(1− β)(1− x)
− 1− β

x

]
.

Since

L′(x) = − 1− β(1− x)

(1− β)(1− x)2
− 1− β

x2
< 0,

L(x) is decreasing in x, and L(DSP
1 ) > L

(
1
2

)
. Therefore

H(DSP
1 , 0)−H

(
1

2
, 0

)
− [c(1)− c(2)] = L(DSP

1 )− L

(
1

2

)
> 0.
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B Numerical Methods for Finding Equilibria

B.1 Homotopies.

This Appendix provides details of our implementation of the homotopy algorithm

using the example of how we use a sequence of homotopies to try to enumerate the

number of equilibria that exist for different values of (ρ, δ) for given values of τ . Our

implementation of other homotopies, for example, by varying τ , is similar to a single

step in this sequence. We describe the procedure assuming that M = 30 and that we

are using the price and value formulation of the equations. Identical procedures apply

using the choice probability formulation, except that it is necessary to use the choice

probabilities to calculate prices and values in order to check whether the identified

solutions are different enough to be labeled as distinct equilibria.

B.1.1 Preliminaries

We identify equilibria at particular gridpoints in (ρ, δ) space. We specify a 201-point

evenly-spaced grid for the forgetting rate δ ∈ [0, 0.2] and a 41-point evenly-spaced

grid for the learning progress ratio ρ ∈ [0.6, 1]. The state space of the game is defined

by a (30 × 30) grid of values of the know-how of each firm.

B.1.2 System of Equations Defining Equilibrium

An MPNE is defined by a system of equations (one V S∗ equation (text equation (17))

for each of 900 states and one p∗ equation (text equation (6)) for each of 900 states.

The grouping of all of these equations is denoted F .

B.1.3 Homotopy Algorithm: Overview

The idea of the homotopy is to trace out an equilibrium correspondence as one of

the parameters of interest is changed, holding the others fixed. Starting from any

equilibrium, the numerical algorithm traces a path where a parameter (such as δ),

8



and the vectors V S∗(e) and p∗(e) are changed together so that the equations F

continue to hold, by solving a system of differential equations. The differential

equation solver does not return equilibria exactly at the gridpoints so it is necessary

to interpolate between the solutions returned by the solver. Homotopies can be

run starting from different equilibria and varying different parameters. When these

different homotopies return interpolated solutions at the same gridpoint it is necessary

to define a numerical rule for when two different solutions should be counted as

different equilibria.

B.1.4 Procedure Details

Step 1: Finding Equilibria for δ = 0. The first step is to find an equilibrium

(i.e., a solution to the 1,800 equations) for δ = 0 for each value of ρ on the grid. There

will be a unique MPNE for δ = 0, as, in this case, movements through the state space

are unidirectional, so that the state will eventually end up in the state (M,M) where

no more learning is possible.

We solve for an equilibrium using the Levenberg-Marquardt algorithm imple-

mented using fsolve in MATLAB, where we supply analytic gradients for each equa-

tion. The solution for the previous value of ρ are used as starting values. To ensure

that the solutions are precise, we use a tolerance of 10−7 for the sum of squared values

of each equation, and a relative tolerance of 10−14 for the price and value variables

that we are solving for.

Step 2: δ-Homotopies. Using the notation of Besanko, Doraszelski, Kryukov, and

Satterthwaite (2010), we explore the correspondence

F−1(ρ) = {(V∗,p∗, δ)|F (V∗,p∗; ρ, δ) = 0, δ ∈ [0, 1]},

The homotopy approach follows the correspondence as a parameter, s, changes

(in our analysis, s could be δ, ρ or τ). Denoting x = (V∗,p∗), F (x(s), δ(s), ρ) = 0

9



can be implicitly differentiated to find how x and δ must change for the equations to

continue to hold as s changes.

∂F (x(s), δ(s), ρ)

∂x
x′(s) +

∂F (x(s), δ(s), ρ)

∂δ
δ′(s) = 0

where ∂F (x(s),δ(s),ρ)
∂x

is a (1,800 x 1,800) matrix, x′(s) and ∂F (x(s),δ(s),ρ)
∂δ

are both (1,800

x 1) vectors and δ′(s) is a scalar. The solution to these differential equations will

have the following form, where y′i(s) is the derivative of the ith element of y(s) =

(x(s), δ(s)),

y′i(s) = (−1)i+1 det

((
∂F (y(s), ρ)

∂y

)
−i

)
where −i means that the ith column is removed from the (1,801 x 1,801) matrix

∂F (y(s),ρ)
∂y

.

To implement the path-following procedure, we use the FORTRAN routine FIX-

PNS from HOMPACK90, with the ADIFOR 2.0D automatic differentiation package

used to evaluate the sparse Jacobian ∂F (y(s),ρ)
∂y

and the STEPNS routine is used to

find the next point on the path.20,21

The FIXPNS routine will return solutions at values of δ that are not equal to

the gridpoints. Therefore we adjust the code so that after each step, the algorithm

checks whether a gridpoint has been passed and, if so, the routine ROOTNX is used

to calculate the equilibrium at the gridpoint, using information on the solutions at

either side.22

The time taken to run a homotopy is usually between one hour and seven hours,

20STEPNS is a predictor-corrector algorithm where hermetic cubic interpolation is used to guess
the next point, and an iterative procedure is then used to return to the path.

21For details of the HOMPACK subroutines, please consult manual of the algorithm at https:

//users.wpi.edu/~walker/Papers/hompack90,ACM-TOMS_23,1997,514-549.pdf.
22It can happen that the ROOTNX routine stops prematurely so that the returned solution is

not exactly at the gridpoint value of δ. We do not use the small proportion of solutions where the
difference is more than 10−6. Varying this threshold does not affect the reported results. We also
need to decide whether the equations have been solved accurately enough so that the values and
strategies can be treated as equilibria. The criteria that we use is that solutions where the value of
each equation residual should be less than 10−10. Otherwise, the solution is rejected. In practice,
the rejected solutions typically have residuals that are much larger than 10−10.
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when it is run on UMD’s BSWIFT cluster (a moderately sized cluster for the School

of Behavioral and Social Sciences).

Step 3: Enumerating Equilibria. Once we have collected the solutions at each of

the (ρ, δ) gridpoints we need to identify which solutions represent distinct equilibria,

taking into account that small differences may arise because of numerical differences

that are within our tolerances. For this paper, we use the rule that solutions count

as different equilibria if at least one element of the price vector differs by more than

0.001.

Step 4: ρ-Homotopies. With a set of equilibria from the δ-homotopies in hand,

we can perform the next round of our criss-crossing procedure which alternates ρ-

homotopies and δ-homotopies, which we run in both directions (e.g., decreasing ρ as

well as increasing ρ). We use equilibria found in the last round as starting points.23

This second round of homotopies can also help us to deal with gridpoints where the

first round δ-homotopies identify no equilibria because a homotopy run stops (or takes

a long sequence of infinitesimally small steps). As noted by Besanko, Doraszelski,

Kryukov, and Satterthwaite (2010) (p. 467), the homotopies may stop if they reach

a point where the evaluated Jacobian ∂F (y(s),ρ)
∂y

has less than full rank. Suppose, for

example, that the δ-homotopy for ρ = 0.8 stops at δ = 0.1, so we have no equilibria

for δ values above 0.1. Homotopies that are run from gridpoints where we did find

equilibria with higher values of δ and higher or lower values of ρ may fill in some of

the missing equilibria.

Step 5: Repeat Steps 3, 2 and 4 to Identify Additional Equilibria Using

New Equilibria as Starting Points. We use the procedures described in Step 3

23In practice, using all new equilibria could be computationally prohibitive. We therefore use
an algorithm that continues to add new groups of 10,000 starting points when we find that using
additional starting points yields a significant number of equilibria that have not been identified
before. We have experimented with different rules, and have found that alternative algorithms do
not find noticeably more equilibria, across the parameter space, than the algorithm that we use.
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to identify new equilibria at the gridpoints. These new equilibria are used to start

new sets of δ-homotopies, which in turn can identify equilibria that can be used

for new sets of ρ-homotopies. This iterative process is continued until the number

of additional equilibria that are identified in a round has no noticeable effect on

the heatmaps which show the number of equilibria. For the Besanko, Doraszelski,

Kryukov, and Satterthwaite (2010), τ = 0 case, this happens after 8 rounds.

B.2 Method for Finding Equilibria Based on Three Refor-
mulated Equations in the M = 3 Model.

We now describe the alternative method that we use to identify equilibria when

M = 3.

As described in the text, the equilibrium conditions can be reformulated in terms

of the probability that seller 1 is chosen in each state. If we restrict ourselves to sym-

metric equilibria then, together with the restriction that D1(e1, e2) = 1−D1(e2, e1),

then there are just three unknown probabilities. We will use D1(1, 2), D1(1, 3) and

D1(2, 3). The equilibrium equations for these three states are:

σ log

(
1

D∗
1(e1, e2)

− 1

)
− p∗1(e1, e2) + p∗2(e1, e2) = 0, (22)

and, from text Section 3.2,

p1 = Φ(D1) + c1 − β(Q1 −Q2)(I− βQ2)
−1[D1 ◦Φ(D1)]. (23)

in vector form, so that we can substitute prices to express the equations (22) in terms

of choice probabilities only.

We proceed in the following steps for a given (ρ, δ, τ) combination.

Step 1. Define a grid of possible values for D1(1, 2) and D1(1, 3). For each, we

use a vector [1e-10, 1e-9, 1e-7, 1e-6, 1e-5, (0.0001:(0.9999-0.0001)/200:0.9999), 1-1e-5,

1-1e-6, 1-1e-7, 1-1e-8, 1-1e-9, 1-1e-10].
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Step 2. For every combination on the grid, find for the value of D1(2, 3) which

solves the equilibrium equation for state (2,3), and record the values of the equations

(22) for states (1,2) and (1,3), in matrices M(1, 2) and M(1, 3).24

Step 3. Use MATLAB contour command to define the shapes where theM(1, 2)

and M(1, 3) surfaces are equal to zero.

Step 4. Count all of the intersections of these curves, using the user-defined

MATLAB function InterX command.25

Of course, the contours are calculated using interpolation so the solutions are

therefore not quite exact. Therefore,

Step 5. Using the solutions from the contour intersections as starting points,

solve the equilibrium equations using fsolve.

Step 6. Count the number of solutions where at least one choice probability is

different from all of the other equilibria by at least 5e-4.

To give a sense of the procedure, consider the parameters ρ = 0.1, δ = 0.05 and

τ = 0.0. Figure B.2 shows the contour plot. The three intersections between the

black and red lines in the bottom left of the figure identify equilibria.

24We have not been able to prove uniqueness, but all of the the examples we have looked at there
is a unique solution.

25https://www.mathworks.com/matlabcentral/fileexchange/22441-curve-intersections.
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Figure B.2: Illustration of the Contour Plot for ρ = 0.1, δ = 0.05 and τ = 0.
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C Additional Analysis for the M = 3 Model

This Appendix provides some additional analysis for the M = 3 model, including for

results that are mentioned briefly in the text.

C.1 Equilibrium Strategies and Outcomes for Polar Cases
for ρ = 0.3 and δ = 0.03.

We use ρ = 0.3 and δ = 0.03 as our example parameters in the M = 3 model.

Table C.2 shows equilibrium prices, sale probabilities and welfare outcomes for (i)

the social planner solution, (ii) the equilibrium when τ = 0, and (iii) the equilibrium

when τ = 1. The table also shows the probabilities that the industry is in each state

after 4 periods (state (3,3) cannot be reached) and 32 periods.

C.2 TSPDV , HHI32 and Dynamic Incentives for Alternative ρ
and δ.

Our M = 3 analysis in the text uses ρ = 0.3 and δ = 0.03 as an illustration. We ob-

serve that TSPDV , HHI32 and the value of dynamic incentives increase as τ increases

from zero, with TSPDV and the value of dynamic incentives displaying inverted-U re-

lationships with τ , and concentration a monotonically increasing relationship. The

non-monotonic path of dynamic incentives reflects how leads tend to be short-lived

when τ = 0, but last longer, so that the value of attaining a lead can increase, as τ

rises even though the seller’s share of surplus is falling. The non-monotonic path of

TSPDV reflects how the social planner would choose more concentration than pro-

duced by the τ = 0 equilibrium but less than the equilibrium with τ = 1.

Figure C.2(a)-(c) show the values of τ that maximize TSPDV , HHI32 and the

PDVs of seller dynamic incentives for all possible ρ and δ combinations using 0.05

steps of τ from 0 to 1. We use the maximum value of the outcome for the small set

of (ρ, δ, τ) parameters with multiple equilibria. This choice does affect the value of τ

that maximizes the statistic for some (ρ, δ) combinations (see Appendix C.3 for an
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Figure C.2: Panels (a)-(c): Values of τ Maximizing TSPDV , HHI32 and the PDV
of Seller Dynamic Incentives in an M = 3 Model. For values of (ρ, δ) with multiple
equilibria we use the equilibrium that maximizes the value of the statistic. Panel (d)
shows equilibrium, for various τ , and social planner HHI32 as a function of δ when
ρ = 0.3.

(a) TSPDV (b) HHI32

(c) PDV of AB+AD Incentives (d) HHI32

17



example).

The pattern that raising τ increases concentration is fairly general, and in the

cases where HHI is maximized for τ < 1, the level of concentration when τ ≈ 1 is

exceptionally high. However, the non-monotonicity of TSPDV and dynamic incentives

is only a systematic pattern when δ is small and, in the case of dynamic incentives,

LBD effects are also at least moderately important.

The patterns change when δ is larger. Panel (d) shows what happens to HHI32 in

equilibrium, for various τ , and for the social planner, as δ varies and ρ = 0.3. For δ >

0.1, the social planner solution involves a single firm making almost every sale, until

δ > 0.8, at which point forgetting is so likely that the firm making a sale is unlikely

to lower its costs. Equilibria when 0.1 ≤ δ ≤ 0.8 also lead to high concentration,

although slightly less than the social optimum due to the leader charging a markup.

For δ ≥ 0.1, welfare tends to be maximized when τ = 1, consistent with τ = 1

maximizing the probability that a firm with the lowest possible cost will make the

sale.

For a wide-range of parameters, dynamic incentives are maximized when τ = 0.

This reflects how concentration is high, and leads tend to last a long time, even when

τ = 0 for δ > 0.1. When leads last a long time, the lead lengthening effect cannot in-

crease dynamic incentives significantly, and is dominated by how increasing τ shrinks

sellers’ future profits. When ρ is high, competition is always fairly symmetric, and

increasing τ does not cause leads to lengthen very much so that the lead-lengthening

effect is also small.26
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Figure C.3: Prices in Symmetric States, HHI32, TSPDV and Dynamic Incentives
along τ -homotopy paths when ρ = 0.02 and δ = 0.058.

(a) Prices in Symmetric States (b) HHI32

(c) TSPDV (d) Dynamic Incentives
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C.3 Analysis for ρ = 0.02 and δ = 0.058: Parameters with
Multiple Equilibria.

ρ = 0.3 and δ = 0.03 support a single equilibrium for all τ . In this subsection, we

show how changing τ changes outcomes and dynamic incentives for ρ = 0.02 and

δ = 0.058. For these parameters, multiplicity exists for τ ≤ 0.202. ρ = 0.02 implies

that production costs fall from 10 to 0.2 when know-how increases from state 1 to 2,

i.e., learning-by-doing effects are extreme and sellers in states 2 and 3 have almost

the same costs, but a state 2 seller is at risk of experiencing a very large cost increase

(and cost disadvantage) if it does not make a sale. As δ is not too large, the social

planner would prefer to have both firms in states 2 and 3, with DSP
1 (2, 3) ≈ 0.8 so

that both firms are very likely to be low cost in the next period.

Figure C.3 shows the values of equilibrium HHI32, TSPDV, prices in symmetric

states, and the PDVs of AB and AD incentives along τ -homotopy paths that start

from the three equilibria that are identified when τ = 0. The τ = 0 equilibrium that

is on the path that continues all of the way to τ = 1 has a pronounced diagonal trench

in the sense of having very low, and below cost, “aggressive” prices in all symmetric

states, high equilibrium concentration (D∗
1(1, 2) ≈ 0.07), and large AD incentives.

In contrast, prices in asymmetric states are higher (for example, in (3,1) prices are

6.1 and 10.5), reflecting how a laggard has limited incentive to try to catch up when

symmetric competition is so fierce. This equilibrium minimizes total surplus as the

costs associated with reduced variety are larger than the benefits of lower expected

costs. The two other τ = 0 equilibria involve firms setting higher prices in symmetric

states, including above cost prices in state (3,3). In one of the equilibria concentration

is lower than the social planner would choose.

As τ increases, the benefits of achieving a lead in the diagonal trench equilibrium

decrease, so that there is a range of τ , between 0.1 and 0.22, where equilibrium

26For example if ρ = 0.9 and δ = 0.03, increasing τ from 0 to 0.2, causes the lead of a firm in (2,1)
to last an expected 2.4, rather than 2.3, periods. The PDV of AD incentives does increase slightly
over this range, but this is offset by the value of AB incentives falling by slightly more.
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concentration falls, and symmetric prices rise. On the other hand, concentration

increases on the loop from the other two τ = 0 equilibria. TSPDV is maximized on

the loop path that does not extend past τ = 0.202.

For the M = 30 model with illustrative technology parameters (ρ = 0.75, δ =

0.023), we also find three equilibria when τ = 0. Two of them have diagonal trenches,

and they are on a loop that does not extend past τ = 0.07. Based on that example,

we have been asked by discussants and seminar participants whether diagonal trench

equilibria are always on paths that do not continue once τ is large enough, as this

would suggest one might be able to view variation in buyer bargaining power as some

type of equilibrium selection device. ThisM = 3 example provides a counter-example

to this conjecture, and, while diagonal trench equilibria are often eliminated, we have

identified similar counterexamples for M = 30 as well.

C.4 Introducing an Outside Good and Varying σ.

We follow Besanko, Doraszelski, Kryukov, and Satterthwaite (2010) in assuming that

there is no outside good and that σ, which controls the degree of product differentia-

tion, equals 1. In this appendix we examine how far our conclusions about the effects

of bargaining power on outcomes depend on these assumptions, assuming ρ = 0.3

and δ = 0.03.

C.4.1 Outside Good.

When the buyer is able to choose not to purchase, sellers face additional competition

which will constrain markups. One can construct intuitions where this either weakens

the incentive of a firm to establish a lead over its rival (as it will reduce the return

to establishing a lead) or strengthens it (as competition from the outside good may

make it even harder for a laggard to catch up).

We introduce an outside good by assuming that, in every period, buyers have a

third option, with indirect utility v−p0+ε0, where p0 is an exogenous parameter that
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we can use to control the attractiveness of the outside good. Besanko, Doraszelski,

and Kryukov (2014), who consider a model where only a single seller may be active,

allow an outside good with a baseline p0 = 10.

Figure C.4(a) shows the equilibrium values of HHI32 for τ = 0, 0.2 and 0.5 as a

function of p0. Figure C.4(c) and (e) show the PDV of AB and AD incentives. The

BDKS model can be viewed as the limiting case where p0 → ∞ (i.e., we extend the

right-hand edge of the figure further to the right). The effects of the outside good

are small unless p0 < 7, in which case dynamic incentives increase and concentration

(reflecting the dominance of one seller over its rival) increases slightly. However, for

p0 ≈ 10, all measures are very similar to those when an outside good is assumed not

to exist, and introducing an outside good has little effect on the comparisons between

different τs.

C.4.2 Changing Product Differentiation.

As σ increases, it becomes more likely that, in any period, the buyer will have a strong

preference for one of the sellers, so that seller competition is softened. This will tend

to make it more likely that purchases will be evenly split across sellers, although the

expectation of future sales and softened competition could increase a firm’s incentive

to lower its own costs.

Figure C.4 shows the same statistics as σ is varied, assuming that there is no

outside good. Increasing σ from 1 lowers concentration, but does not dramatically

change how giving buyers bargaining power affects outcomes. On the other hand,

reducing σ to 0.8, or lower, causes equilibrium concentration to increase sharply and

can introduce multiple equilibria when τ = 0, illustrated by the τ = 0 path bending

back on itself. Higher concentration is associated with leads lasting longer when

τ = 0, which tends to lead to dynamic incentives monotonically declining in τ .
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Figure C.4: HHI32 and the PDV of Dynamic Incentives as a Function of the Exoge-
nous Price of an Outside Good (panels a, c, and e) and Product Differentiation (b, d
and f) when M = 3, ρ = 0.3 and δ = 0.03.

(a) Outside Good: HHI32 (b) Differentiation: HHI32

(c) Outside Good: PDV of AB Incentives (d) Differentiation: PDV of AB Incentives

(e) Outside Good: PDV of AD Incentives (f) Differentiation: PDV of AD Incentives
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C.5 Subsidies.

We calculate subsidies that could implement the social planner outcome. The text

shows that the subsidies that would be optimal if ρ = 0.3, δ = 0.03 and τ = 0 lower

welfare, relative to the no subsidy equilibrium, if τ ≥ 0.06.

We try to investigate whether optimal τ = 0 subsidies lower welfare for other

technologies when τ > 0. We specifically consider τ = 0.2 so that sellers have most,

but not all, of the bargaining power and an economist might assume that a τ = 0

analysis would provide a reasonable approximation if they do not appreciate how

quickly strategies and outcomes change when τ increases from zero.

Figure C.5(a) shows that τ = 0 subsidies lower welfare if τ = 0.2 for a wide range

of parameters as long as LBD effects are not too limited (ρ < 0.85). The red areas

indicate cases where there is either an efficiency gain or the existence of multiple

equilibria when τ = 0.2 means that we cannot sign whether welfare is increased

or reduced. The white area indicates parameters where we cannot solve for τ = 0

subsidies or we cannot solve for the equilibrium when τ = 0.2 when these subsidies

are in place.

The fact that the white areas cover so many parameters may seem surprising. It

reflects the extreme values of some of the required subsidies or the extreme values of

the equilibrium choice probabilities when these subsidies are in place. As illustration,

panel (b) shows the level of the subsidy the planner would want to give to a laggard

making a sale in state (1,2). For δ > 0.1, the subsidies or taxes can be extremely

large. It is also interesting how a small change in ρ can switch the optimal scheme

from providing a laggard with a very large subsidy to requiring the laggard to pay a

very large tax.
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Figure C.5: Optimal τ = 0 Subsidies and Welfare in the M = 3 Model. Panel (a)
shows, for the values of ρ and δ for which we can identify equilibria, parameters where
τ = 0 optimal subsidies increase or decrease welfare when τ = 0.2 (compared to no
subsidy equilibria). Panel (b) shows the value of τ = 0 subsidies to the laggard in
state (1,2). A negative subsidy is a tax on a laggard sale.

(a) Welfare Effect of τ = 0 Subsidies if τ =
0.2

(b) Level of τ = 0 Laggard Subsidy in State
(1,2)
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D Additional Analysis for the M = 30 Model

D.1 Equilibria for τ = 0, ρ = 0.75 and δ = 0.023.

Table D.1 lists strategies in a subset of states for the three equilibria that exist for the

illustrative technology parameters when τ = 0. All equilibria have negative prices in

the initial state (1,1). The B and C equilibria are characterized by a “diagonal trench”

with lower prices when firms are symmetric or almost symmetric. For example, prices

in (10,10) are 2.43, whereas prices in (29,10), where costs are weakly lower, are 5.39

and 5.15. The trench in equilibrium B does not extend to the highest levels of know-

how, and it has slightly lower HHI1,000, as it is more likely that the sellers will be

symmetric in the long-run. Equilibrium A, with the lowest HHI1,000, has prices that

vary less with know-how once both firms reached know-how states 3 or 4. However,

the leader sets lower prices when the laggard is in know-how states 1 or 2, so that, at

the start of the game, it is more likely that one of the sellers will move down its cost

curve more quickly, so that HHI32 is higher.

D.2 Concentration and Bargaining Power.

Text section 5 shows, for the illustrative technology parameters, that:

� concentration is similar in dynamic equilibria and in an equilibrium where firms

price statically, and concentration is lower than the social planner would choose,

when τ = 0.

� static and dynamic equilibria are identical when τ = 1, and concentration is

above the level that the social planner would choose.

� with static pricing, concentration increases fairly steadily as τ increases from

0 to 1, whereas, with dynamic behavior, concentration increases sharply (and

actually overshoots its τ = 1 level) as τ increases from zero.
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Table D.1: Equilibria in the Besanko, Doraszelski, Kryukov, and Satterthwaite (2010)
Model for Illustrative Parameters (δ = 0.023, ρ = 0.75) and τ = 0 in the M = 30 and
m = 15 Model.

Eqm. A Eqm. B Eqm. C
HHI32 = 0.537 HHI32 = 0.520 HHI32 = 0.520

HHI1,000 = 0.500 HHI1,000 = 0.516 HHI1,000 = 0.527
e1 e2 c1 c2 ∆1 ∆2 p1 p2 p1 p2 p1 p2
1 1 10.00 10.00 0.0230 0.0230 -0.54 -0.54 -1.63 -1.63 -1.61 -1.61
2 1 7.50 10.00 0.0455 0.0230 4.91 7.21 5.16 7.60 5.15 7.60
2 2 7.50 7.50 0.0455 0.0455 4.22 4.22 0.77 0.77 0.77 0.77
3 1 6.34 10.00 0.0674 0.0230 5.82 8.18 6.56 8.71 6.55 8.70
3 2 6.34 7.50 0.0674 0.0455 4.65 5.46 4.06 5.97 4.05 5.97
3 3 6.34 6.34 0.0674 0.0674 5.11 5.11 1.49 1.49 1.47 1.47
4 1 5.62 10.00 0.0889 0.0230 5.95 8.29 6.67 8.55 6.67 8.54
4 2 5.62 7.50 0.0889 0.0455 4.86 5.85 5.46 7.08 5.46 7.08
4 3 5.62 6.34 0.0889 0.0674 5.08 5.42 3.81 5.53 3.80 5.54
4 4 5.62 5.62 0.0889 0.0889 5.22 5.22 1.72 1.72 1.70 1.70
10 1 3.85 10.00 0.2076 0.0230 5.89 8.16 6.14 7.71 6.13 7.69
10 2 3.85 7.50 0.2076 0.0455 5.05 6.06 5.75 6.43 5.75 6.42
10 3 3.85 6.34 0.2076 0.0674 5.20 5.81 5.80 6.31 5.80 6.31
10 8 3.85 4.22 0.2076 0.1699 5.10 5.20 4.49 5.85 4.49 5.86
10 9 3.85 4.02 0.2076 0.1889 5.11 5.15 3.26 4.56 3.25 4.55
10 10 3.85 3.85 0.2076 0.2076 5.12 5.12 2.47 2.47 2.43 2.43
15 1 3.25 10.00 0.2946 0.0230 5.79 8.05 5.98 7.36 5.97 7.38
15 2 3.25 7.5 0.2946 0.045 5.02 5.93 5.63 6.18 5.62 6.17
15 3 3.25 6.34 0.2946 0.0674 5.22 5.74 5.67 6.02 5.67 6.01
15 10 3.25 3.85 0.2946 0.2076 5.19 5.20 5.40 5.94 5.41 5.95
15 14 3.25 3.34 0.2946 0.2780 5.23 5.21 3.46 4.44 3.43 4.44
15 15 3.25 3.25 0.2946 0.2946 5.24 5.24 3.16 3.16 3.10 3.10
16 16 3.25 3.25 0.3109 0.3109 5.28 5.28 3.24 3.24 3.18 3.18
20 20 3.25 3.25 0.3721 0.3721 5.25 5.25 3.32 3.32 3.20 3.20
22 22 3.25 3.25 0.4007 0.4007 5.25 5.25 3.44 3.44 3.26 3.26
25 25 3.25 3.25 0.4411 0.4411 5.25 5.25 3.90 3.90 3.28 3.28
27 27 3.25 3.25 0.4665 0.4665 5.25 5.25 4.62 4.62 3.34 3.34
28 28 3.25 3.25 0.4787 0.4787 5.25 5.25 4.98 4.98 3.52 3.52
29 1 3.25 10.00 0.4907 0.0230 5.79 8.05 5.63 7.62 5.57 7.46
29 2 3.25 7.50 0.4907 0.0455 5.01 5.91 5.04 5.77 5.07 5.72
29 10 3.25 3.85 0.4907 0.2076 5.23 5.17 5.35 5.17 5.39 5.15
29 15 3.25 3.25 0.4907 0.2946 5.27 5.22 5.45 5.34 5.52 5.33
29 29 3.25 3.25 0.4907 0.4907 5.25 5.25 5.22 5.22 3.98 3.98
30 1 3.25 10.00 0.5024 0.0230 5.79 8.05 5.67 7.66 5.63 7.53
30 2 3.25 7.50 0.5024 0.0455 5.01 5.91 5.10 5.84 5.12 5.81
30 10 3.25 3.85 0.5024 0.2076 5.23 5.17 5.33 5.21 5.35 5.19
30 15 3.25 3.25 0.5024 0.2946 5.27 5.22 5.42 5.35 5.45 5.33
30 29 3.25 3.25 0.5024 0.4907 5.25 5.25 5.30 5.20 4.29 4.60
30 30 3.25 3.25 0.5024 0.5024 5.25 5.25 5.27 5.27 4.77 4.77

Notes: ci, pi, ∆i are the marginal costs, equilibrium price and probability of forgetting for firm i.
HHI∞ is the expected long-run value of the HHI.
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To investigate how far these results depend on the specific technology parameters,

Figure D.1 shows the level of HHI32 under the social planner solution, and the

dynamic equilibria when τ = 0, 0.1, 0.25, 0.5 and 1 for the ranges of (ρ, δ) that

we consider. When multiple equilibria exist, the maximum HHI32 is shown. The

existence of multiple equilibria is the reason for the discontinuities in shading in the

τ = 0 and τ = 0.1 figures. Figure D.2 shows the level of HHI32 under the social

planner solution, and the unique equilibria when τ = 0, 0.1, 0.25, 0.5 and 1 with

static seller behavior (i.e., sellers’ dynamic incentives are set to zero) in each state.

Static and dynamic equilibria are identical when τ = 1.

We observe that

� if τ = 0, dynamic and static equilibrium HHI32 is generally below the level

that the social planner would choose except for high ρ (limited LBD) and δs

between 0.025 and 0.1. For this range of δs multiple equilibria are common,

and the maximum equilibrium HHI32 is low but slightly larger than the social

planner would choose.

� if τ = 0, dynamic and static equilibrium HHI32s are generally similar unless

δ > 0.03 (which implies ∆(m) > 0.37 and ∆(M) > 0.6 so depreciation rates are

quite high). If δ > 0.03, HHI32 tends to be larger in dynamic equilibria.

� dynamic equilibrium concentration generally increases sharply as τ increases

from zero. Concentration when τ = 0.5 is similar to concentration when τ = 1,

although there are examples where HHI32 is at a high level but declines slightly

as τ increases from 0.5 to 1. Concentration increases more gradually with τ in

the static equilibria.

� for δ < 0.03, social planner concentration is somewhere between dynamic equi-

librium concentration when τ = 0.25 and dynamic equilibrium concentration

when τ = 0.5. This is consistent with our finding that TSPDV is maximized for
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τs around 0.3 for these δs (see text Figure 6(a)). For δ > 0.03, concentration

when τ = 0.5 is also similar to the socially optimal levels.

The patterns observed for the illustrative technology parameter results are there-

fore fairly typical of what we see for other parameters that imply significant LBD

effects if know-how depreciation is also limited. The next sub-section provides some

analysis for ρ = 0.95 and δ = 0.03, which is one example where τ = 0 equilibrium

concentration is above the social planner level.
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Figure D.1: Expected Value of theHHI32 in the Social Planner Solution and Dynamic
Equilibria. HHI32 value is the maximum across equilibria.

(a) Social Planner (b) τ = 0

(c) τ = 0.1 (d) τ = 0.25

(e) τ = 0.5 (f) τ = 1
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Figure D.2: Expected Value of the HHI32 in the Social Planner Solution and Equi-
libria with Static Seller Behavior. All static equilibria are unique.

(a) Social Planner (b) τ = 0 Static

(c) τ = 0.1 Static (d) τ = 0.25 Static

(e) τ = 0.5 Static (f) τ = 1 Static
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Figure D.3: The Effects of Changing the Allocation of Bargaining Power for ρ = 0.95
and δ = 0.03 With No Policies.

(a) HHI32 and HHI200 (b) TSPDV

D.3 Effects of Bargaining Power For ρ = 0.95 and δ = 0.03.

In the text, we use ρ = 0.75 and δ = 0.023 as our illustrative technology parameters.

For these parameters, market concentration is significantly lower than the social plan-

ner would choose when τ = 0. In this subsection, we consider ρ = 0.95 and δ = 0.03

as an example of technologies where τ = 0 equilibrium concentration is higher than

the social planner would choose. The discounted value of dynamic incentives also

declines in τ and multiple equilibria exist for some low τ even though the τ = 0

equilibrium is unique. ρ = 0.95 implies limited LBD: know-how can lower production

costs by no more than 18%.

Figure D.3 replicates text Figure 7 for our new parameters. The unique equi-

librium with τ = 0 has concentration a little above the socially optimal level, and
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the level that would be generated by static seller pricing. The dynamic equilib-

rium τ -homotopy path bends back on itself so that there are multiple equilibria for

0.07 ≤ τ ≤ 0.175. In this range, concentration and welfare in the less concentrated

equilibria are very close to the socially optimal and static equilibrium levels.27 For

τ ≥ 0.175, the equilibrium concentration increases with τ and efficiency declines for

τ ≥ 0.3.

Policies. Figure D.4(a) shows the optimal subsidies that would implement the social

planner solution as a function of τ . When τ = 0, the subsidies are much smaller

in scale than for the illustrative technology parameters, consistent with equilibrium

concentration being closer to the socially optimal level. Even though equilibrium

concentration is too high when τ = 0, laggards are taxed when they make a sale.

This reflects how, given socially optimal sales probabilities in other states, the laggard

would be too likely to make a sale without a tax. Panel (b) shows that the τ = 0

subsidy scheme lowers welfare if τ ≥ 0.175. For 0.08 ≤ τ ≤ 0.175 the scheme may

increase or decrease welfare depending on which no-subsidy equilibrium is played.

Therefore, the conclusion that subsidies that would maximize welfare when τ = 0 can

lower welfare for values of τ that are greater than zero but small remain.

Panels (c) and (d) show the effects of our stylized policies to promote competition.

We only consider policies that are introduced from the start of the industry. As equi-

librium concentration is very low until τ approaches 1, the concentration restriction

has almost no effect on welfare or concentration until τ is large. The incentive policies

increase welfare when τ ≈ 0, and they also increase welfare for τ > 0.7.

27The decline in concentration as τ increases is also associated with the leads of leaders tending
to last for fewer periods, which also means that sellers’ dynamic AB and AD incentives decline in
τ , rather than increasing-then-decreasing as they do for the illustrative parameters.
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Figure D.4: Policies and Bargaining Power for ρ = 0.95 and δ = 0.03. Subsidies are
given to the laggard when it makes a sale. This analysis assumes that policies are
introduced at the start of the industry’s life.

(a) Optimal Subsidies in Selected States (b) Welfare and τ = 0 Optimal Subsidies

(c) Policies Promoting Competition:
HHI32

(d) Policies Promoting Competition:
TSPDV
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D.4 Alternative Concentration Restriction Policies.

Text section 5.3 shows the effects of a concentration restriction policy, where the

leader i has to pay a compliance penalty of χ × max{0, Di − ψ} where χ = 50 and

ψ = 0.75. As Di = 0.5 when firms are symmetric, and the maximum Di approaches

1, ψ = 0.75 is a natural value to consider. We choose χ = 50 as an example of a

policy which lowers concentration but which still provides some probability that a

firm will establish a know-how advantage that will lead to the compliance cost being

incurred.

Figure D.5 shows how policies with different χs affect concentration and discounted

total welfare (recall that we do not count the compliance cost as a total welfare loss)

for the illustrative technology parameters, as a function of τ . Consistent with what

one would expect, increases in χ lower concentration for values of τ where the share

threshold would likely be breached with no policy in effect. For the values of χ that

we consider, welfare falls as χ increases, although further analysis identifies that for

τ ≈ 0.4 the policy can slightly increase TSPDV when χ is slightly greater than zero.28

28For example, when τ = 0.4, TSPDV = −90.4880 when χ = 2, compared to -90.4883 when χ = 0
(no policy).
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